
Vdaq
The Alibava Data Acquisition

program

EDIFICI EUREKA. CAMPUS UAB. 08193 BELLATERRA, BARCELONA, SPAIN

TEL +34 93 586 88 32 INFO@ALIBAVASYSTEMS.COM

WWW.ALIBAVASYSTEMS.COM

Vdaq

The Alibava Data Acquisition program
The Alibava Systems

This document describes Vdaq, the Alibava Data acquisition system. The
document will describe the different components of the GUI that allow to control
the acquisition process as well as the data structure. It will also describe the
software that Alibava provides to read the data from the files.

Table of Contents
1. Introduction...3

1.1. What is Vdaq..3
1.2. How to start Vdaq...5

2. Using Vdaq..5
2.1. Starting/Pausing/Stopping a run...5
2.2. Configuring Vdaq...6
2.3. Acquiring data...6
2.4. General parameters...6
2.5. Pedestals...7
2.6. DAQ settings..8
2.7. Setting the paths to search for libraries, configuration files, etc..8
2.8. Plugins..9

3. Run types...11
3.1. Introduction...11
3.2. Normal Data Run..11
3.3. Pedestal Run...11
3.4. Scans...12

4. Monitoring...13
4.1. Monitoring..13

5. Vdaq data format...14
5.1. The header...14
5.2. The module...15
5.3. The scan..15

6. The Vdaq analysis software...17
6.1. The VDAQData class...17
6.2. The VdaqModuleData class..18

7. The VATA GP7/HDR data...20

2

1.Introduction

1. Introduction

1.1. What is Vdaq

Vdaq is an application to drive the data acquisition of a number of instruments. The application tries to
be modular, in the sense that different instruments are handled by plugins that are dynamically loaded,
providing a number of hooks to configure and monitor them.

Vdaq is based on DAQ++. DAQ++ is a C++ framework to develop data acquisition programs. I will
not enter into the details of this. I will just mention the main objects defined in DAQ++. Those are the
DAQmanager, the RunManager and the Module. The DAQmanager controls the data acquisition
process and is a kind of main gate to access the DAQ internals. The RunManager is the object that
controls the acquisition mode. We may want to have different types of runs, like for instance pedestal
runs, scans on important parameters to produce curves like the gain of an ASIC, etc. It will distribute
the acquisition commands (like start, stop, reset, etc,) to the Module objects (to be explained in a
minute) and it is also what DAQ++ calls a data receiver. It will receive the data from other objects in
the acquisition. We finally have the Module objects. These are the interface with the hardware. They
know how to get the data out of a piece of hardware either through VME, USB, PCI, etc. They are,
therefore, called data producers. Figure 1 shows how the DAQ++ objects are organized. Vdaq is a
graphical user interface to this framework.

As already said, the different ways in which those instruments are handled during a run, or acquisition
session, is controlled by a set of DAQ++ RunManager objects. There is a default set of them, but the
user can also write his/her own and override the default Vdaq behavior. All this is driven by a
configuration file which will be described later.

Vdaq can handle the modules in different ways or styles. In other words, Vdaq provides various run
modes according to:

• Trigger : The trigger can be selected to be either external or internal, where internal means that
each module finds the way of generating whatever is needed to produce data by software or
any internal means, and external refers to the case in which something else is generating the
data for us.

• Interrupt : This is probably an unfortunate term, but it refers to the way in which the program
realizes there is some data in the detector. There are two possibilities here as well

‣ Poll: the program keeps on asking if there is data until there are some in the detectors, and

‣ Interrupt: the program sleeps until some mechanism awakes it and then tries to read the
data.

3

DAQmanager

RunManager

Module Module Module

RunManager

Module Module Module Module

... RunManager

Module Module

Figure 1: The DAQ++ object hyerarchy

1.Introduction

Figure 2 shows the main window of Vdaq. The different components are, on the right a couple of
speedometers that show the instantaneous acquisition rate and the efficiency, which is the percentage
of the events registered which are dumped to file (if logging data). Below those objects, there is a
tracer showing the throughput in kb/s.

On the left there is a button that shows the state of the acquisition and, also, controls the acquisition.
When clicking that button, a pop-up menu will appear with a selection of possible DAQ commands to
issue. Below the run menu there are a number of indicators showing the number of triggers seen so far,
how long the run has been taking data and the name of the output data file.

There is a small window at the bottom where all the devices configured are shown. This is shown with
more detail in Figure 3. Each small window corresponds to a module. On the upper right corner, in
bold letters, one sees the module identifier. At the left of this label there is a small button which, when
clicked, will open a window to configure the module. If the module plug-in does not implement that,
no window will appear. The button with a lock on it is to put the module in local. What is that ? It may
happen that you have a configuration file with many modules defined, but in a given moment you only
want to run with a few of them. In that case, click there, and if the module is un-locked it won't
participate in the run. At the right of the lock there is another button that when clicked will open the
monitoring window for that module (see section Monitoring). If clicked again, it will close the monitor
window.

4

Figure 2: Vdaq main window

Figure 3: Modules in the main display

1.Introduction

1.2. How to start Vdaq

To start Vdaq just type:

Vdaq [options] [config_file]

where config_file is the name of a file in which we have stored the Vdaq configuration (see
section Configuring Vdaq). the most common and the options are:

--soap-port=port_number The port where the SOAP server will be serving
requests.

--no-gui Does not start the graphical interface. The program
will then run as a server which can be accessed via
SOAP.

--no-cfg Do not load the default configuration file if none is
given at input. Vdaq will start with no modules loaded.
This can be useful to create a new configuration from
scratch.

2. Using Vdaq

2.1. Starting/Pausing/Stopping a run

Starting a run is quite easy. Be sure that all your modules are properly configured and click on the
long, horizontal button in the main window (see Figure 2). A menu like the one showed in Figure 4
will pop up. You should click on start.

Depending on the options selected for trigger type and interrupt the run will behave on one way or
another. One can request the run to finish after a maximum number of triggers are registered if that
number is specified in the Max. no. of events text entry. Otherwise Vdaq will run until it is stopped
with the run menu button.

There are special run types, like scans and pedestal runs which are activated and/or configured with
the Scan or Pedestal buttons (see section Run types).

5

Figure 4: Run menu

2.Using Vdaq

2.2. Configuring Vdaq

The program is configurable and remembers the last settings. This is done with the help of a
configuration file. The configuration file is stored in the default configuration folder. This is usually

1. $HOME/.config/Vdaq in Unix systems and

2. C:\Documents and Settings\username\Local Settings\Application Data\Vdaq in windows
systems.

To load a configuration file when the program is already started, use the Open item in the File menu.

The current settings can also be saved in a configuration file in order to retrieve them in a later session.
This is done with the Save item in the File menu. A dialog box will pop-up. In the dialog box you will
see a list of existing configuration files. To overwrite one of those, select it and click OK. To save the
configuration in a new file, type the name of the file in the text box at the bottom of the dialog.

2.3. Acquiring data

If you want to log data into a file (the most common situation, I guess) you should set up the program
to do it. Vdaq gives fixed names to the data files. The names have, however, a structure that will allow
to differentiate one run from the other. The structure is the following:

base_name+run_number+"_"+file_number+".data"

The base_name can be set in the Settings menu, IO control tab (Figure 5). The run number is
automatically incremented by Vdaq every time a new run is started, although the starting value can
also be set in the IO control tab.

Vdaq will never let a file grow indefinitely. There is a maximum size a data file may have and this is
also set in the IO control tab. Once a data file has reached this maximum size, it will be closed and a
new one will be opened, with the same base_name and run number, but with the file_number
incremented.

2.4. General parameters

The Settings menu allows to set some other general parameters used by Vdaq as shown in Figure 6.

Here one can set a few parameters that define how Vdaq will handle the calculation of pedestals. One
can set the number of events that will be acquired in a Pedestal run. This can be set to -1 which means
that the run will stay until stopped manually. This may be useful if you want to spy in the monitor
window how stable and reliable are your pedestals.

6

Figure 5: Input/Output settings

2.Using Vdaq

One can also specify whether pedestals and noise will be updated during monitoring and, finally, how
the pedestals will be computed. The pedestals will be dumped in the data file with a fixed period that
can be set in this dialog. The minimum number of samples per channel is only useful if one chooses
the proper method for the pedestals. This is further explained in section Pedestals.

Warning

Vdaq will only update and, to a some extend, compute
pedestals if monitoring is enabled. Otherwise, the only way
of doing it is to make a pedestal run or load the pedestals
from a file

2.5. Pedestals

The pedestals can be uploaded or saved into a file. Usually when logging data into a file the pedestals
are also saved there, but it may happen that you have pedestals that have been calculated before hand
and you want to use them as the starting point of your acquisition. This can be done with the dialog
window that pops up when selecting either Save pedestals of Load pedestals from the Settings... menu
as shown in Figure 7.

On this dialog one should select the module for which he/she wants to load or save the pedestals, the
file where the pedestals should go or come from and, finally, choose which pedestals to save. This may
require a few extra words on how pedestals are handled in Vdaq.

The pedestals are computed only during monitoring or during a Pedestal Run. While monitoring
they are stored in an internal buffer of the monitor. Only after a Pedestal run the pedestals are copied
into the module. On this dialog we can choose whether we want to operate with the pedestals stored in
the monitor or the ones stored in the module.

7

Figure 6: General settings

Figure 7: Pedestals Menu item

2.Using Vdaq

Choosing to load the pedestals into the monitor will not
modify the pedestals on the module and after clicking on
the Reset button in the monitor window they will be
overwritten by the values in the module.

The behavior of Vdaq concerning the pedestals when a new run is started is as follows. If we have
already pedestals computed from a previous run or uploaded from a file, Vdaq will start with those and
update them if required. If there are no pedestals at all, and updating is allowed, then Vdaq will spend
the first events to compute the pedestals, and only when a given channel has a pedestal calculated with
a minimum of the minimum sample that we set in the dialog shown in Figure 6 will be displayed.

Pedestals can be computed with two methods:

• Fast method: Vdaq assumes that the initial value of the pedestals is 0 and starts updating the
pedestals and the noise. This method's performance in terms on convergence and stability
depends on the values given in for the weighting parameters in the module configuration.

• Proper or normal method: Vdaq uses the first events to get an estimate of the pedestals. The
estimate is just the mean value over a minimum number of sampled events. From there on,
Vdaq switches to the update method.

2.6. DAQ settings

There are a number parameters that control some of the DAQ aspects. Those can be set from the
Settings menu, clicking on Preferences and choosing the DAQ tab. The dialog window is shown in
Figure 8

The monitor buffer text entry specifies the maximum number of events that the monitoring buffer will
store for further analysis. Vdaq inherints from the DAQ++ library a SOAP server which can be used to
monitor the status of the data acquisition remotely or, even, control the data acquisition. The port
where the SOAP server will serve the user requests can be set here.

2.7. Setting the paths to search for libraries, configuration files, etc.

Vdaq will search for various objects which are spread in the file system. One can specify which are the
paths that Vdaq should explore to find those objects while running. This is done from the Settings
menu, clicking of Preferences and choosing the Paths tab.

8

Figure 8: DAQ settings

2.Using Vdaq

There are three different kind of paths: library paths to search for plugins, glade paths to search for
glade files and config paths to search for configuration files. This can be selected from the combo on
the upper right part of the dialog.

Once a path type has been selected, the paths will be listed in the dialog window. One can add a new
path or delete a selected path. When selecting a path, it can be moved up and down to establish the
proper search order.

2.8. Plugins

Vdaq is a modular application that can be extended with a number of plugins. The plugins can be
added to define new modules (the objects that are able to communicate with the hardware), run
managers (the objects that define the acquisition mode, like for instance pedestals, scans, etc), data
loggers (the objects that write data to a file) or interrupts (the objects that discover whether there is
data to read from the hardware).

Plugins can be configured from the Plugins menu. A dialog window with a number of tabs will appear.
To add a plugin to handle a new piece of hardware one needs to select the Plugin tab. The dialog
window is like the one shown in Figure 9.

A plugin is just a shared library that provides a sort of driver for the new hardware that we want to
control. It has a name, and element, which is the name we give to that hardware and then a hook,
which is the function that creates the module driver and a library where that function is defined. To
create a new one, click on the Add button and set the plugin and element names. Then click on the
Hook button to define the hook. A window like the one in Figure 10 will appear.

Set the library name, or browse the file system to find it and then, click on Find Symbols to get the list
of functions on that library and select one. This last step may not work if symbols have been stripped
from the library.

One can also remove a plugin by selecting it and clicking on Delete.

This is not the end of the process, though. What we have done is to define the piece of software that
will handle the hardware objects named by the element value of the plugin. Now we have to tell the
system how many of those objects we have. This is done in the Modules tab of the dialog window,
which is shown in Figure 11.

9

Figure 9: Plugin settings

Figure 10: Plugin hook

2.Using Vdaq

There you list of hardware objects that you want to have in the system by specifying the driver that
will control them (the element value), an identifier and what is called a hardware address, which is
usually required by the drives to communicate with the hardware.

To setup interrupts (the objects that figure out when data is ready to be read) select the Interrupts tab in
the Plugin menu. A window like the one showed in Figure 12 will be displayed.

Type the name or the library or browse the file system to find it and then write the different functions
which are needed for the interrupt. If the library has symbols, click on the button at the left of the
function name text entry and you will get a list of functions in the library.

There are several elements that will define the behaviour when confronted to an interrupt. See the
section What is Vdaq to see what Vdaq understands as interrupt. The meaning of the different
functions is:

• enable is the name of a routine that will take the necessary actions to leave the system in a
state ready for the detection of trigger conditions. However, after calling this, Vdaq may not
be sensitive to them yet.

• disable is the name of the routine that will disable detection of interrupts.

• start is the name of a routine that will leave Vdaq in a state sensitive to interrupts.

• stop will stop detection of interrupts, although this is different to disable in the sense that
Vdaq can still do it after calling the function in start

• reset provides the name of a routine that should leave the system in a state suitable to a start a
new run. The system may not be sensitive after this call. Only when start is called the system
should be sensitive to them.

10

Figure 12: Settings to define interrupts

Figure 11: module definition

2.Using Vdaq

As explained in section Run types there are several types of run managers. Vdaq offers default
implementations which are, usually, just enough, but the user can define his/her own run managers.

The possible run manager types are:

• data: this is the normal run type

• pedestal: this is used for the pedestal runs

• int_trg: this is used when internal trigger is selected as run acquisition mode in the main
window

• pulse: this is used when we want an external "pulse" or "stimulus" generator

• scan: this is used for the scan runs

Then, from the RunManagers tab of the Plugins menu one can load those new implementations. The
dialog window is show in Figure 13.

Run managers can be added or removed clicking the appropriate buttons. To define the hook, that is,
the function that creates the new run manager and the library where it can be found can be set by
clicking on the Hook button, as explained for the module plugins.

Finally, data loggers (the objects that write the data on file) other than the default can be loaded from
the Data Loggers tab in the Plugins menu as shown in Figure 13.

3. Run types

3.1. Introduction

Vdaq can make different types of runs:

1. Data RunManager

2. Pedestal Run

3. Scan

3.2. Normal Data Run

A normal data run is a run in which we just want to take data. This is the default when starting a run
from the run menu. The only exception is a Scan run that will be described in section Scans.

3.3. Pedestal Run

A pedestal run is, a priory, like a normal data run but in this case we force monitoring every event so
that Vdaq can calculate the pedestals over the full sample. Also, the minimal sample to trust the
pedestals is set to the total number of events we plan for the pedestal run. When the run is over, the
pedestals are saved in the module itself.

11

Figure 13. Datalogger (lefft)a nd Run Manager (right) configuration tabs.

3.Run types

Pedestal runs are started by clicking the Pedestal button in the main window. The main parameters of a
Pedestal Run are set through the Settings... menu item, on the General tab, as described in section
General parameters.

3.4. Scans

Vdaq can make scans on a number variables:

• pulse

• threshold

• channel

• trim

In order to define a scan, click on the Scan button in the main window. A dialog like the one shown in
Figure 14 will appear.

One can define a scan with the help of this menu. On the left there is a list of the variables available
for the scan. When you chose one of them, the range of the scan for that variable will appear on the
text entries on the right. There one can set the number of points, the step, etc. When ready, click on the
Add button and the current values will appear on the list below. One can select any of the variables in
the Selected Tests frame. Its values will, again appear on the text entries where one can modify them.
Again, in order to update the values, one should click on Add. To delete a variable from the list, select
it and click on Delete. The order of the scan is that the lower variable corresponds to the innermost
loop, and the upper variable to the outermost loop. One can change the order with the Up and Down
buttons.

When the scan is ready, one can save it with a given name, so that it will be stored in the configuration
and can be restored at a later run. To do that, click on the plus button on the Available scans list. Give
the scan a name, and click on the save button to save it. In the combo box you will find the existing
scans. You can select any of them and make it the active one for this run.

To activate the scan run, do not forget to click the Scan button on the upper left corner of the dialog.

12

Figure 14: Scan definition dialog window.

4.Monitoring

4. Monitoring

4.1. Monitoring

Vdaq allows to monitor the data during the acquisition. This is, certainly, time consuming and if the
acquisition rate should be high, one should foresee the possibility of disabling this feature.

Monitoring can be enabled or disabled by means of the monitoring button in the main window, as
shown in Figure 2. Disabling monitoring will speed up the acquisition, if the rate is very high, but one
will not be able to see how the acquisition proceeds. One should, therefore, decide, according to the
acquisition rate, what to do.

If monitoring is enabled, one can see, for each module, the results of monitoring. This consists,
usually, on pedestals, noise, hitmap and event display. The main monitor window is shown in Figure
15 and Figure 16. To show this window, one clicks on the small button with a histogram drawn in the
small window corresponding to the given module (see Figure 3). The window has three tabs that show
different things: Signal and hitmap, pedestals and noise and, in the last one, the event display and other
properties displayed in the form of trace plots.

Figure 15 shows the spectrum at the top and the hitmap at the bottom. Both the hitmap and the signal
histograms can be visualized in 1D or 2D. To toggle between the 2 modes press the small buttons
labeled 1D (or 2D) by the histograms.

Warning

The hitmap histogram can only be shown in 2D if there is a
padmap in the configuration file that will help translating
electronic channels into pixels.

The signal histogram can be show as the signal distribution of all the channels, only the channels of a
given chip or as a function of the channel number, that is, in 2D. This is done by selecting the
corresponding option from the menu onn top of the histogram.

Figure 16 show the third tab of the monitoring window. It shows several properties as a funtion of time
at the top like noise, common mode noise, temperature, etc. At the bottom it show, for a given event,
the segnal seen by each channel or, in other words, the event display.

13

Figure 15. Main tab in the monitoring window. The spectrum is shown on the top. The bottom shows
the hitmap. If there is information about the mapping of the channels one can see it in 2D (left)
otherwise it is only shown in 1D.

4.Monitoring

There is an extra feature that links the signal and the hitmap. One can select a signal range on the
signal histogram with the left button of the mouse. The limits of the range will appear in the text
entries below the hitmap histogram. When pressing the Apply button, the 2D hitmap will only display
the pixels with counts within that range. Clicking on the Undo button will restore the hitmap
histogram.

In the case of 1D histograms one can magnify one of the axis, or both. You can choose a given range
in any of the axis by selecting it with the left button of the mouse while pressing:

• CTRL for the X axis or

• SHIFT for the Y axis

The original range is restored pressing the mouse middle button. Click the mouse right button to
explore the popup menu and change some of the histogram attributes.

For a 2D histogram, one can select the range of Z values by moving the pointer on the color scale
while pressing the left button of the mouse. To restore the original scale, click on the middle button of
the mouse.

5. Vdaq data format

Vdaq stores the data using the HDF5 library.

The data in the output file is organized in different blocks:

• header
• modules
• scan

Use HDFView to see and browse the data format. It will help understanding the text below.

5.1. The header.

The header has an attribute with the definition of the run. The run description contains the type of run,
the run number the number of events and the time. The header gruop has as attribute a run_record
structure (see Table 1).

The header contains 2 groups that describe the modules that take part of the run and the key moments
of the run.

14

Figure 16. The tab of the monitor window showing the common mode noise of the ASICs as a trace
plot at the top and the event display (the signal of each channel for a given event) at the bottom.

5.Vdaq data format

5.1.1. /header/modules

This is a list with the module descriptions. They are encoded as 0xnn0tiii with

• nn = number of chips
• t = data type
• iii = module identifier

5.1.2. /header/run_records

Vdaq stores run records every now and again and certainly at the start of run and at the end of the run.
The run records contain the following information

Variable Description

run_type The type of run. Runs can be Data (0),
Pedestal (1), Internal Trigger (2), Scan (3)
or Pulse (4). See Vdaq manual for a version
of it.

run_number The run number

nevts The number of events at the time of the
writing of the record

time The time when writing the record. The time
is given as an array like [second, minute,
hour, day, month, year].

Table 1. Description of variables in the run_records group of the data header.

5.2. The module

The module group has one subgroup per module named with the module ID

/modules/iii

where iii is the module ID.

The module group has the data group where the user defined data format resides and the configuration
array that contains an array of integers with the configurations. This is module dependent. Finally,
there is the pedestal group that contains:

/modules/iii/pedestals/pedestal - the pedestals
/modules/iii/pedestals/noise - the noise

5.3. The scan

The scan block has two records, one that defines the scan (/scan/def) and the second that tells when
Vdaq changed to the new scan point and the values of the variables.

/scan/def/nevt - number of events per scanpoint
/scan/def/nvar - number o variables to scan
/scan/def/variables - the description of the variables

The scans of the different variables are described by a structure having the members shown in Table 2.

15

5.Vdaq data format

Variable Description

type identifies the variable being scanned

npoint number of points in the scan

from first value of the scan

to the last value of the scan

Table 2. Description of the variables that are scanned in a Scan Run.

16

6.The Vdaq analysis software

6. The Vdaq analysis software

With HDF5, writing your own analysis software is not too difficult if the data is properly described.
However, we provide a framework that makes the HDF5 handling transparent for the user.

There are 2 main classes that provide access to Vdaq data.

• VdaqModuleData: contains the information relative to an individual module in one of the events. It also
provides an iterator that helps to navigate through the module data.

• VDAQData: is the main portal to the data. It opens the file and is able to navigate through the file
structure and create VdaqModuleData classes which get the data of the individual Vdaq modules. It also
provides a very simple iterator that navigates through all the data of all the modules. Data can be
retrieved ordered according to some of the data values like, for instance, time stamp.
It also maintains a list of all the modules found in the data file and provides ways of accessing those
modules by the module id or via iterators.

We also provide iterators to navigate through all the data from all modules (assuming they are all of
the same kind). One of the iterators returns the data as it comes (vdaq_iterator) and the second
(vdaq_sorted_iterator) sorts the data according to the given compare function.

6.1. The VDAQData class

This is the main class to access the data. It is responsible for opening the data file and it creates the list
of modules that have data in the file.

To handle the specifics of each module data format, one should register a module creation function
that creates the corresponding instance of the user defined implementation of the VdaqModuleData
interface. This is done via register_type().

6.1.1. Methods

This section describes the class most important methods. See the code for additional documentation.

VdaqData (const char *file_name=0)

This is the constructor. If a file name is given it will be opened.

Int open(const char *file_name)

Opens the given file. This one is usually called when the object instance is created without a file to
open or when the operations on a given file are finished and we proceed to analyse a new file.

void close()

Closes the file.

uint32_t nevts() const

Returns the number of events in the data block.

bool has_scan() const

Tells wether the file has scan data.

VDaqModuleData *module(int id)

Returns the module with identifier id.

int n_modules() const

Tells the number of modules in the system.

ModuleList::iterator begin()

17

6.The Vdaq analysis software

ModuleList::iterator end()

The iterators to the list of modules.

The following is a list of template functions used to obtain iterators to go through the data. Note that
these do not belongto the VDAQData class

template<typename _ModuleData> vdaq_iterator<_ModuleData>
create_vdaq_iterator(VDaqData &M)

Returns an iterator of the data of all the modules in the data block. _ModuleData is the structure
defining the data definition. The events are given as they appear in each of the module data block. The
iterator iterates over the data of several modules of the same kind. Note that it is a forward iterator, it
does not implement the increment or decrement operators. Instead it uses the next method.

The iterator has

1. the module_id() method to know the module from which the current data chunk comes.

2. The iterator acts as a pointer to the _ModuleData structure.

template<typename _ModuleData> vdaq_sorted_iterator< _ModuleData >
create_vdaq_sorted_iterator(VDaqData &M,

 typename vdaq_sorted_iterator< _ModuleData >::Compare _comp)

Returns an iterator of the data of all the modules in the data block. _ModuleData is the structure
defining the data definition. The events are ordered by the comparison function. Note that for this to
work we need that each module has the data sorted already. Note that it is a forward iterator, it does
not implement the increment or decrement operators. Instead it uses the next method.

The iterator has

1. the module_id() method to know the module from which the current data chunk comes.

2. The iterator acts as a pointer to the _ModuleData structure.

The rest of the operations, which usually have to do with data access are responsibility of the
VdaqModuleData class.

6.2. The VdaqModuleData class

This class contains the Vdaq generic information about a module. It provides and iterator to go
through the data. The iterator, however, is a template since this class knows nothing about the actual
data format.

To provide access to the data details the best is to create a class deriving from VdaqModuleData that
gives access to the different components of the data. To have it done in an automatic way one should
call VdaqData::register_type().

6.2.1. The class methods

This section describes the most used methods of the class. Note that this class knows nothing about the
actual data format. This knowledge belongs to the classed that inherit from this and handle the
specificities of the module data.

int get_module_id() const

Returns the module identifier.

uint32_t get_nevts() const

Returns the number of events in the module data block

18

6.The Vdaq analysis software

int get_ntot() const

Returns the total number of channels in the module.

int get_nchip() const

Returns the number of chips in the module.

int get_n_config() const

Returns the number of configuration words

const uint32_t *get_config_data() const

Returns a pointer to the array of configuration words. The meaning of those words depends on the
different modules.

double get_noise(int ichan) const

Returns the noise of channel ichan.

double get_pedestal(int ichan) const

Returns the pedestal of channel ichan.

void read_pedestals(const char *fname)

Reads pedestals and noise from an ASCII file. The file should have one line per channel and each line
contains the pedestal and the noise separated by a white space character.

void read_map_file(const char *fname)

Reads the channel map from an ASCII file.

const PadMap *map() const

Returns the PadMap object. See the software documentation for more information about the PadMap.
However if your sensor is 1D, there is no need to worry about this.

template<typename _ModuleData> ModuleDataIterator<_ModuleData> begin()
template<typename _ModuleData> ModuleDataIterator<_ModuleData> end()

Those are the begin and end iterators to go through this particular module data. The iterator acts as a
pointer to the _ModuleData structure. The increment operator will read the data from the file.

19

7.The VATA GP7/HDR data

7. The VATA GP7/HDR data

When using the Vdaq data iterators one will retrieve, for each event, a pointer to a data structure
containing the event information of the Vdaq module that handles boards with the GP7 and HDR
chips. This data structure is as shown below.

struct Data
{
 double temp; // Temperature
 double daq_time; // Time of arrival of event to DAQ program
 uint32_t time; // Time stamp from MadDAQ
 uint16_t evtcnt; // Event counter
 uint16_t nchan; // Number of channels in the data array
 uint16_t romode; // readout mode: 1) serial, 2) sparse, 4) adj.
 union
 {
 uint16_t data[1]; // this is for serial
 struct
 {
 // Use this for sparse modes
 uint16_t chan;
 uint16_t data[1];
 /*
 * For sparse+neighbors, the channels come as
 * chan, chan+1, chan-1, chan+2, chan-2, etc...
 */
 } sparse;
 };
};

The MadDAQModule class provides methods to interpret the configuration data which are listed
below.

 int get_adj_size()
 int get_adj_index(int i) const

When the system runs in sparse with adjacent channels, this will tell how many neighbours are to be
considered and, also, give the index in the list of adjacent channels. The index is 0 for the central
channel, ±1 for the right and left neighbours, ±2 for the next outer neighbours, etc.

 int get_firmware() const

Returns the version of the firmware

 int get_hold_Delay() const

Returns the value of the hold delay

 int get_nadj() const

Returns the number of adjacent channels

 int get_ro_Mode() const

Tells the read out mode used: serial or sparse

 int get_threshold() const

Gives the value of the threshold in DAC units

 int get_trg_Type() const

Gives the trigger type

20

7.The VATA GP7/HDR data

There are also a number of methods that will help with the analysis of the data.

void compute_pedestals(int nevts=-1)

Computes the module pedestals from the data. This is particularly usefull when in serial mode. The
arguments tells hown many events will be used to make the pedestal calculation. The default is to use
all the evetns.

HitList process_event(Data *evt)

Process the data of the given event. It will remove pedestals, compute common mode noise and try to
find clusters. It will return a list of hits. The actual data types are as follows:

typedef std::pair<int, double> Hit;
typedef std::vector< Hit > HitList;

21

	1. Introduction
	1.1. What is Vdaq
	1.2. How to start Vdaq

	2. Using Vdaq
	2.1. Starting/Pausing/Stopping a run
	2.2. Configuring Vdaq
	2.3. Acquiring data
	2.4. General parameters
	2.5. Pedestals
	2.6. DAQ settings
	2.7. Setting the paths to search for libraries, configuration files, etc.
	2.8. Plugins

	3. Run types
	3.1. Introduction
	3.2. Normal Data Run
	3.3. Pedestal Run
	3.4. Scans

	4. Monitoring
	4.1. Monitoring

	5. Vdaq data format
	5.1. The header.
	5.1.1. /header/modules
	5.1.2. /header/run_records

	5.2. The module
	5.3. The scan

	6. The Vdaq analysis software
	6.1. The VDAQData class
	6.1.1. Methods

	6.2. The VdaqModuleData class
	6.2.1. The class methods

	7. The VATA GP7/HDR data

