
Alibava GUI
Alibava Systems

1. Introduction.

alibava-gui is a graphical user interface that controls the ALIBAVA card. It is able to configure the
device, receive the data that the card sends via the USB bus and store it in a file for further analysis.
alibava-gui also monitors the data while in acquisition mode so that the user can detect problems or just
find the proper parameters to run the system in an optimal way.

1.1. What is alibava-gui?

The alibava firmware provides 5 run modes

• Pedestals: makes a pedestal run. Alibava generates an internal trigger that will allow to compute the
baseline or pedestals and its variation (the noise)

• Calibration: makes a calibration run. Alibava programs the Beetle chips to inject calibration pulses to
all the channels in order to charactirize the electrical behaviour of the ASICs.

• Laser synchronization: Alibava is able to send a pulse that can be used to trigger a laser system. This
run mode scans the delay between the pulse sent by alibava and the acquisition so that the system will
sample at the maximum of the signal produced by the laser.

• Laser: makes a laser run. One needs to run the in laser synchronization mode before in order to read
back the optimal signal produced by the laser.

• Source: makes a run in which the acquisition is triggered by signals above the threshold in the input
connectors.

Figure 1 shows the main window

Figure 1. Alibava main window

As one can see, the run types are selected on the right hand side of the window. Right by the run type
name there are buttons that, when clicked, will open a dialog window to configure the run parameters.
All the settings can be stored in a configuration file by clicking save in the File menu. One can load

1

Alibava GUI

different configurations clicking on Open in the File menu. There are more configuration settings that
can be set by clicking on the different items of the Settings menu.

On the left hand side you can see the DAQ button. This button starts or stops the acquisition. You can
monitor the number of acquired events, the elapsed time, the acquisition rate and the efficiency.The rate
is integrated in 1 second time windows, so expect 0 values while the data is being read out from the USB
port. The efficiency is the number of events that pass the criteria defined in the Analysis dialog window
(Section 4.5).

In the middle of the window there is a collection of tabs that will allow to monitor the data during the
data acquisition and on some of the tabs one can find buttons that will refine the information displayed
on the histograms.

alibava-gui also provides the possibility to load user defined plugins that will allow to perform
non-standard actions at different stages of the acquisition process. Those plugins can be written both in
C++, as shared libraries, or in Python, as normal Python scripts. However, the plugin is not active by
default. In order to activate or deactivate it one needs to toggle the state of the button named Plugin in the
main window (See Figure 1).

Finally, note the Reconnect button. Sometimes you unplug the alibava system from the USB plug
without quitting alibava-gui. When that happens you shoul dpress this button. It will close any open
device and reopen it.

2. Starting alibava

2.1. Setting up the environment

Windows and Mac OSX operative systems are not very restrictive with permissions and one can usually
access the serial ports with any particualr effort. Linux systems, however, are a bit mor restictive and it
may happen that one does not have the access rights to read or write in the the serial port. In modern
Linus distributions it is enough to belong to the dialout group in order to have access to /dev/ttyUSBn
device file. If your user does not belong to that group then you will have to add it. To check if you are
already in the dialout group type

id

on the terminal.

2

Alibava GUI

Older distributions of Linux used the udev package. When installing alibava-gui as a super user, a new
group will be created named alibava. Also a new udev rule will be added granting read/write permissions
to the members of that group. In order to grant any user with read/write permissions on the USB bus you
will have to make him/her a member of the alibava group. This must be made as super user by typing the
following

/usr/sbin/usermod -aG alibava {your user name}

For that to work the installation should be made as super user. If you installed alibava-gui withour root
privilegues, then you will have to create the alibava group and install the udev rules manually as root by
typing

/usr/sbin/groupadd -f alibava

followed by the execution the script install-udev.sh. The script can be found on the top folder of the
distribution bundle.

To check that the installation has been done properly, plug in an Alibava card on your USB hub and
check that there is a file called /dev/alibava0. If this is so the udev rules are properly installed and the
members of the alibava group will be able to read from and write to the device. Also, alibava-gui will
automatically detect in which port the Alibava card is connected. If alibava-gui is not able to figure out
that, it will quit unless you force the program to try to open another device at the command line (see
Section 2.2).

Warning

In some versions of Linux, the udev rules defined in install-udev.sh do not work
and one can just add the user to the dialout group with the same command as for
the alibava group.

2.1.1. Old alibava-gui versions

In alibava-gui version older than 0.1.6-3 the program was not able to detect the Alibava card and no udev
rules were provided. In that case one was forced to do things manually. In order to allow alibava-gui to
read from and write to the device there were a number of steps to follow which are explained below.

When the Alibava card is plugged in the computer, the driver decides which port to use and alibava-gui
did not have any means of discovering which one it was in an automatic way.

After plugging in the card, one should type

3

Alibava GUI

dmesg

and look for the port that the driver has selected. The name is usually /dev/ttyUSBn where n is 0 most of
the times. Another problem encountered quite often is that a normal user does not have read/write
permissions. To solve that you should type

change_priv n

where n is the number you found for /dev/ttyUSBn. If it is 0, you do not need to specify it.

Warning

change_priv needs super user permissions. That means that you should install
alibava as super user. This will make the program run with superuser attributes
even if you launch it from within your account.

2.2. How to launch the program

Once this is done, one launches the alibava application by typing

alibava-gui [options] [config_file]

where config_file a file where all the settings have been saved. The options can be

Table 1. alibava-gui options

--gui Shown the main GUI. This is the default

--no-gui The program runs without a GUI

--emulator Simulates (Emulates) the data. Useful to get familiar
with the application

--nevts=n Set n as the maximum number of events in the run

--sample=n Number of events to acquire in the motherboard
before transmitting the data to the PC

--dev=/dev/ttyUSBn Set /dev/ttyUSBn as the port to communicate with
the motherboard in case n is not the usual 0

--out=out_file_name Sets the path and name of the output data file

--pedestal Acquire a Pedestal run when in no-gui mode

--source Acquire a RadSource run when in non-gui mode.
Other required settings should be provided through
a configuration file.

4

Alibava GUI

--calib Acquire a Calibration run when in non-gui mode.
Other required settings should be provided through
a configuration file.

--laser Acquire a Laser run when in non-gui mode. Other
required settings should be provided through a
configuration file.

--activate-plugin Activates the plugin if defined in the configuration
file.

--firmware=n Forces a given version of the firmware.

--soap-port=nn port number ofr the alibava-gui soap server

In general, when running in GUI mode, all the options listed above can be set in the various dilaogs. One
could, for instance give some of the options at the start of alibava-gui to have those values by default at
the beginning. When running in non GUI mode options need to be provided to change the default values.
Note also that some of the options in the table above assume that there is some more information in a
configuration file provided at the command line. Most of the times the default values of the program will
not procuded the expected effect. This is particularly true for the scan parameters needed when making
calibration runs.

Warning

Older versions of the alibava-gui program (before 0.4.0-1) used to assume that the
firmware version was 0. If this is not the case, when running in non-gui mode one
has to specify the firmware version. There are currently version 0 (the very first),
version 1 and version 2, which is handled form alibava-gui version 0.4.0-1.

3. Taking data

Taking data is easy. Just select the run type, set it up properly and click on the DAQ button (the one
named Start in Figure 1). Now, if you want to store the data for further analysis, you have to press the
Log Data button. A dialog window will pop up where you can select the name of the output file. When
starting the run by clicking start the data will be dumped into the data file.

The following sections describe the different run types

5

Alibava GUI

3.1. Calibration run

The calibration run has 2 main parameters: the strobe delay and the amplitude of the test pulse. At the
moment one can only scan one of those parameters at a time.

The strobe delay sets the delay between the strobe signal that generates the calibration pulse and the
clock rising edge of the beetle 128th slot of the pipeline. This allows to reconstruct the pulse shape. The
amplitude controls the amplitude of the calibration pulse so that one can get the gain and offset of the
characteristic curve of the preamplifier in all the channels. Note that to find the proper value of the gain
one has to find the strobe delay where the signa reaches the maximum value.

Figure 2 shows the main parameters that can be set to define the calibration scan. As already mentioned,
only the charge (with a fixed delay) or the delay (for a fixed charge) can be scanned at a time. One selects
the type of scan with the radio buttons at the last row of the dialog. The value of the fixed variable is set
with the first two rows (Delay and Charge), and then the definition of the scan: starting and ending points
together with the number of points in the scan.

Figure 2. Setting properties of calibration scan

The number of samples per point specifies the number of events that will be acquired for each calibration
pulse amplitude.

Note that there is button (quite hidden) with label Calib. Beetle Comparator. This is clicked when you
want to align the threshold spread of the comparotor of the different channels. See section Section 4.9.

3.2. Laser Synchronization

Alibava is able to send a pulse that can be used to trigger a laser system. This run mode scans the delay
between the pulse sent by alibava and the acquisition so that the system will sample at the maximum of
the signal produced by the laser. The parameters of the delay scan for the laser synchronization are set by
clicking on the button on the right of the Laser Sync. radio button. A dialog box like the one in Figure 3
will pop-up.

Figure 3. Laser Synchronization scan

The parameters from, to and step define the time interval that will be scanned and the time step with
which the laser delay will be increased. The number of samples per point specifies the number of events
that will be acquired for each value of the laser delay.

6

Alibava GUI

3.3. RS, Laser and Pedestal run modes

Laser, source and pedestal runs are very similar modes. However some of the parameters are very
specific to the run mode.

For instance, RS mode needs the trigger to be properly configured. This can be done as described in
Section 4.4.The laser run needs the right delay between the laser strobe and the Beetle trigger, which can
be set as described in Section 4.6.

4. Configuring alibava

There are a number of ways in which you can configure alibava-gui. Once this is done, one can always
save that configuration. To save the current configuration click on the Save or Save As items on the File
menu of the main window. Saved configurations can be loaded afterwards either by given the
configuration file path when starting alibava-gui or by choosing a configuration file through the Open
item in the File menu. Most of the configuration parameters can be accessed through the Settings menu
as shown in Figure 4. Each of the menu items will allow to configure different aspects of the alibava-gui
behavior.

Figure 4. Settings accessible through the Settings item in the main window menu bar

4.1. DAQ configuration

The DAQ has a number of parameters:

• sample size: this is the number of events stored in the mother board memory before sending them to
the PC. This is only used in Pedestal, Laser and Source modes

• number of events: maximum number of events. When then number of events acquired equals this
value the run stops

• Delay: if no data arrives after this delay, alibava-gui will believe there is a communication problem

• Monitor channel: This is the channel whose characteristics curve will be shown in the monitor window

All those parameters can be set by clicking on the DAQ item of the Settings menu as show in Figure 5

Figure 5. DAQ configuration window

7

Alibava GUI

There are two more options that control the behavior of the system.

Enable Busy

Checking this box will make the alibava motherboard send a busy signal through the LEMO connector
used for the laser pulse. This will only happen during the Radioactive Source run mode. Remember that
the signal output is an LVCMOS 3.3V signal that needs to be terminated to 50Ω. When the signa lis "on"
it meands that alibava is BUSY, ie, it is not sensitive to new triggers.

Warning

Be careful with this option since you may send the strobe pulse to a laser system
that may be in danger when receiving the strobe while switched off.

Pulse Shape Reconstruction

When running in RS mode, Alibava measures the time of the incoming trigger with an internal TDC. The
way it works is that the trigger starts the TDC and a system clock raising edge stops it. Since the system
clock has a period of 25ns, this will be the maximum value measured by the TDC.checks this box, the
system will use a 100ns clock derived from the system clock. This allows to measure longer times and,
therefore, to have a measurement of the full pulse shape by plotting the average of the signal as a
function of the TDC measured. This is scketched in Figure 6.

Figure 6. Time scheme of the TDC time

4.2. Beetle configuration

The Beetle parameters are set by clicking on the Beetle item of the Settings menu as show in Figure 7. At
the top of the dialog you can select which chips will be active during the acquisition.

Figure 7. Beetle configuration

The BEETLE chip configuration parameters are described in Table A-1

8

Alibava GUI

4.3. Beetle Comparator configuration

One can also configure the behaviour of the Beetle comparator. This is only usefull for those daughter
boards that process the output of the comparator to produce an autotrigger.

Figure 8. Beetle comparator configuration

The upper button is used to enable and disable this feature. Then one selects the chip and sets the
appropriate parameters like the polarity, trigger mode, threshold, some advance parameters and, also, the
channel mask and threshold corrections of the individual channels. The beetle chip documentation
provides more information about all these parameters.

4.4. External Trigger configuration

The trigger for the Source run can be configured by clicking the Trigger item in the Settings menu or the
Trigger button by the RS run radio button. The dialog is show in Figure 9. Units are in mV.

Figure 9. Trigger configuration

There are two types of trigger. One is the Trigger in, which uses two signals to produce the trigger. The
input signals are supposed to be negative, as well as the corresponding thresholds. The trigger will be
fired it either both (AND) or any of the two (OR) are below the threshold programmed.

The other trigger type is the Pulse in trigger. For this one there are two thresholds, one positive and one
negative. The board will produce a trigger for any signal which is either above both values (a positive
signal) or below both thresholds (negative). If the input pulse falls between the two values it will not
produce a trigger.

4.5. Analysis configuration

The data is monitored while acquiring data and this is displayed in a number of histograms. The
parameters defining how to find clusters, etc. are displayed in the analysis configuration window shown
in Figure 10

Figure 10. Analysis configuration

9

Alibava GUI

4.6. Laser config

The only parameter of the Laser run is the delay (in ns) that can be wet in the Laser item of the Settings
menu or in the text entry by the Laser radio button.

Figure 11. Laser config

Units are in nano seconds

4.7. Plugin configuration

The plugin configuration dialog box appears in Figure 12.

Figure 12. Plugin configuration dialog

There you can specify the plugin language, which can be either C++ or Python, a folder to add to the
search path, the name of the library or Python module to load and the function to call. The Find
Symbols button will open another window with a list of all the callable functions in the plugin. Select
one and click OK. Otherwise you will have to type the function (or hook) name. Also note that when
clicking on Browse for the Library, both the path and the library file name will be filled. alibava-gui will
also select the language based on very simple assumptions.

4.8. Pedestals

alibava-gui can compute pedestals on-line either by making a pedestal run at the very beginning or
estimating the pedestal and noise while taking data. However, for some run types pedestal calculation
makes not sense. This is the case of the calibration, laser synchronization and laser since, a priori, some
channels will always have the same amplitude. Nevertheless, we would like to see the real pedestals
subtracted on th emonitoring histograms. To solve this we can either make a pedestal run or load a
pedestal file via the Load Pedestals item in the Settings menu. Likewise, we can always save on a
separate file a set of pedestals we are proud of via the Save Pedestals item in the Settings menu.

The format of that pedestal file is:

• each line corresponds to one channel with line zero for channel 0

• each line contains the pedestal value, followed by a white space-like character (space or tab) and then
the noise value

10

Alibava GUI

4.9. Calibration of the individual channel corrections to the
comparator threshold

The comparators on the Beetle chip have a non negligible spread and therefore the chip provides
mechanisms to aling the thresholds of all the channels for a given working global threshold. This is a
quite involved procedure but alibava-gui provides an authomatic, yet slightly slow, procedure to do it.

Warning

It is worth noting that this will only work for on the alibava daughter boards where
the Beetle chip autotrigger is enabled.

The procedure is based on counting the number of triggers for a given configuration of the threshold and
the channel corrections. This usually produces the socalled s-curves which, when properly normalized,
yield a 1 when all the events produce a trigger, 0.5 when the threshold is equivalent to the mean of the
input charge distributioin and 0 when no event produces a trigger. This is done with the Beetle
calibration circuit. This system procudes alternate polarities for each channel, always with he same
absolute value of the input charge. So when one programs a given number of events, only have of them
will have the proper polarity. This is taken into account when normalizing so that when the threshold is
so low that we trigger on the noise the value of the s-curve is 2, instead of 1, since we also trigger in the
events with the oposite polarity. This defines a characteristic red band in the histograms produced. There
is another "effect" that has to do with the case in which we trigger also on the undershoot of the pulse in
the events with the oposite polarity. This explains why the s-curves have like to ending points.

The procedure is as follows:

1. Connect the output of the autotrigger in the DB to the TriggerPulse input in the MB.

2. Configure the trigger (see Section 4.4) to trigger on TriggerPulse and set the negative and positive
values of the threshold to -500 and 50 respectively. Other values may work as well: check with your
osciloscope.

3. Click on the Calibration settings button or item in the menu and there click on the button with label
Calib. Beetle Comparator (see Section 3.1). A dialog window lile the one shown in Figure 13 will
pop up.

4. Choose the analysis you want to do and click on the Start button.

5. When the analysis are over, click OK if you want to save the settings, or Cancel otherwise.

6. Save the settings in a configuration file by clicking on the Save As.. item in the File menu.

Figure 13. Calibration of the Threshold corrections for the channels

Once the window is there one chooses the target threshold (in units of electron charge: 1 fC or 6250 e-

11

Alibava GUI

are approx. 22.5 keV. Then we decide if we need inversion at the input of the Beetle comparator or if we
use pulse or track mode (see the Beetle documentaion to understand these parameters).

There is, on the left, a series of check buttons that will perform a specific task.

1. Show spread: This will make a scan of the threshold DAC values for an input calibration charge
equivalent to the desired thresholds. The plot shows if the thresholds are aligned or not as shown in
Figure 14. There one can clearly see the all the channels will have the thresholds alinged that that
particular target.

2. Scan Trim DACs: This will make a scan of the threshold correction DAC for each channel and make
a linear fit of the main DAC resulting as a function of the correction. This will be used to find the
final threshold DAC with the smallest spread among the channels.

3. Find Threshold DACs: THis has to be done together with the previous. It will find the optimad
threshold DAC that minimizes the threshold spread.

4. Comparator Gain: This will scan the threshold DAC for different input pulses so that one can see the
characteristics curve of each channel’s comparator.

5. Current threshold: This can be used to check what is the level of alignment for the current settings.
The plot produced is as shown in Figure 15. It makes a charge scan for each channel so that we can
see where the threshold is set for each of them. In the figure it is about 6000 e-.

Select the desired analysis and click the start button. You can click again the button to stop at any time.
Then click cancel if you do not want to keep the settings or OK if you want to keep them.

Figure 14. Channel comparator spread before and after alignment

Figure 15. Current settings plot

5. Monitoring the data

As shown in Figure 1 there is a set of tabs in the main window that show a number of quantities relevant
to the acquisition.

Figure 16. Signal histogram

12

Alibava GUI

Figure 16 shows the spectrum. However, do not expect to find here a landau when acquiring in Source
mode, since we plot here the signals sampled all along the pulse shape. You can choose to see all the
spectrum from all the chips or from individual chips by clicking in the appropriate radio button on top of
the histogram. If you want to see the average value of the signal as a function of the TDC time registered,
click on the Time profile button and you will see the average wave form of the signal pulse as shown in
Figure 17.

Figure 17. Signal histogram

If you are debugging the system and make changes you can click on Reset histogram and the histogram
contents will be cleared so that you can see the effect of your tweaking.

Figure 18. Event display

Figure 18 shows the contents (in ADC units) of each channel for a given event. You can choose to see the
raw data, without pedestal and common mode corrections or the digested data by clicking on the proper
button on top of the histogram.

Figure 19. Noise and common mode tracer

Figure 19 shows the average noise and the common mode (in ADC units) of both chips. Note that the
noise here and in the pedestals tab are not computed in the same way and the value shown here is slightly
higher than there. In the pedestal tab the noise value is show per channel and is the RMS of the pedestal
distribution. Here we show the RMS of the ADC values of the channels without signal.

5.1. Changing histogram attributes and histogram printing

One can change the histogram attributes by clicking on top of it with the right mouse button. A pop-up
menu will appear as shown in Figure 20 .

Figure 20. Histogram menu

13

Alibava GUI

Clicking on the print item will let you save the histogram as a picture. You can also save it as text so that
you can recover the curve with the program of your choice. Clicking on colors will allow you to change
the background and foreground colors of the axis, the canvas and the histogram itself. You can also
change the position of the axis, its range, change to log scale, draw filled histograms or show the
histogram statistics by activating the corresponding radio buttons.

You can also change the range of the histogram axis to zoom a given region. This is done by selecting it
with the left button of the mouse while pressing:

• CTRL for the X axis or

• SHIFT for the Y axis

6. Plugins for alibava-gui

6.1. The Plugin object

As already mentioned, alibava-gui allows to load plugins that will enable the end-user to perform
non-standard actions at very specific points of the data acquisition process. These stages are:

1. New file: every time we open a new file to store the data

2. Start of run: at the beginning of the run

3. New event: at the beggining of each event.

4. End of event: right before the event is going to be dumped to the output file. This gives the oportunity
to filter the events or, even, change the data format (for instance filtering out unwanted channels)

5. End of run

Figure 23 shows the places, during the acquisition loop, in which the plugin methods are called.

The plugins can be written in C++, as shared libraries, or as Python scripts. Examples can be found in the
test folder of the distribution.

In C++ the plugins are nothing but a class that derives from Plugin in Plugin.h, which is shown in
Example 1. The test folder in the distribution bundle has an example of a C++ plugin together with a
make file (UserMakefile). The example is described in Example 5. In the make files use the pkg-config
program to get the compilation flags and the path to to the alibava include files.

Example 1. Plugin C++ class definition

class Plugin {
Plugin();

virtual ~Plugin();

14

Alibava GUI

enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};

virtual void new_file(std::string &S);

virtual int start_of_run(int run_type, int nevts, int sample_size);

virtual bool new_event(int ievt);

virtual void new_point(std::string &S);

virtual void end_of_run(std::string &S);

virtual int filter_event(const EventData & data, std::string &S);

virtual void get_data_format(std::string &format);

}

The main methods in a Plugin class are:

void new_file(std::string &S);

This method is called at the beginning of a file. This will only happen when data logging is
activated. The method returns a string that will be included in the NewFile data block of the data
file. See Section 8.1 to understand the data blocks.

int start_of_run(int run_type, int nevts, int sample_size);

This method is called at the beginning of each run. The parameters are:

• run_type: this tells you the current run type (See AlibavaGUI::Runtype in AlibavaGUI.h for the
possible values)

• nevts: the number of events for the current run as set by the user on the alibava-gui GUI.

• sample_size: this is the number or events that alibava will acquire in each acquisition

start_of_run returns an integer value that is the actual number of events that alibava-gui will
consider. If the method is not superseeded by your plugin it will just return nevts. The idea behind
this bizarre implementation is to allow the user to perform scans on different parameters and
redefine this way the total number of events from the number of scan poitns and the number of
events per point.

void end_of_run(std::string &S);

This is called at the end of each run. It can return a buffer with some user data that will be included
in the EndOfRun data block of the data file. See Section 8.1 to understand the data blocks.

bool new_event(int evt);

This method is called at the beggining of each event. The argument evt is the current event number.

It returns a boolean which is

• true: when we want to right a CheckPoint block in the data before the current event. The actual
content of the CheckPoint block will be given by the new_point method which will only be
called when new_event returns true.

• false: new_point will not be called for this event.

15

Alibava GUI

The idea behind this is first, to have a handle right at the beginning of an event and, second, to
decide whether we want to add extra information before this event on the data file. This extra
information could be the time of the day or, more interesting, the values of the parameters of a scan
when a new scan point is going to start.

void new_point(std::string &S);

This method is called only when new_event has returned true as explained above. It returns a
string that will be included in a CheckPoint data block right before the current event DataBlock
(See Section 8.1 to understand the data blocks). This is usefull to store in the file the parameters of a
user-defined scan or some information that you would like to write periodically, like humidity (if
you can measure it), detector current, etc.

Warning

If you use AsciiRoot (see Section 8.3), to access the CheckPoint data
you will have to write your own class deriving from AsciiRoot
implementing the method check_point.

int filter_event(const EventData & data, std::string &S);

This is called at the end of an event. The idea is that the user can change the information and the
format of a normal DataBlock (see Section 8.1). A good example could be a laser scan in which you
would only be interested in very few channels. The method returns a string which, if not empty, will
be writen in the DataBlock instead of the normal data. Alternatively, the user may only be interested
in monitoring the data and wishes to keep the default format for the data file. In this case, the output
string S should be empty, otherwise the program will write the contents on that string.

Warning

If you change the BlockData format then you will have to use a class
which derives from AsciiRoot (see Section 8.3) and implements the
new_data_block method. Also the pedestal and noise values sotred int
he data file will loose their meaning and will be unsusable.

void get_data_format(const std::string &data_format);

The plugin returns in data_format a description of the data format in the data chunck returned by
filter_event. The format is specified as a comma separated list of items of the form

name/fmt

where name is the name to be given to the array and fmt a string describing the type.

It follows the convention of the struct module in Python.

16

Alibava GUI

Type description:

• Optional first char

=: native order, std. size & alignment

<: little-endian, std. size & alignment

>: big-endian, std. size & alignment

Followed by a number to specify dimension.

Then comes the type:

c - char

b/B - signed/unsigned byte

h/H - signed/unsigned short

i/I - signed/unsigned int

l/L - signed/unsigned long

f - float

d - double

No other types are allowed

In Python the plugin class is as shown in Example 2.

Example 2. Definition of a Python plugin class

class Plugin (extendsobject) :
def new_file(self) :

def start_of_run(self, run_type, nevts, sample_size) :

def new_event(self, ievt) :

def new_point(self) :

17

Alibava GUI

def end_of_run(self) :

def filter_event(self, time, temperature, value, data) :

def get_data_format(self) :

The parameters, return values and names of the Python methods are like in C++. The only different
method is filter_event since it has a different signature.

string filter_event(self, time, temperature, value, data);

The parameters of this method are:

• time: an integer with the value of the Alibava TDC

• temperature: an integer with the value of the temperature measured by Alibava

• value: the value of the scan variable in the predefined scans (delay in laser synchronization and
injected charge in calibration)

• data: an array of 256 integers with the ADC values

Note that the values of time, temperature and value are not decoded and therefore their
meaning is as described in Table 4. See the description of the C++ method for more information and
warnings.

In Python we should import the alibava module. This module provides several tools that will help us in
implementing the Python plugin class: the set_par method, and the classes DAQConfig and Analysis.

We can set beetle parameters and some other parameters of the system with the set_par method

import alibava

...

alibava.set_par("Ipre", 75)
alibava.set_par("Isha", 10)
alibava.set_par("Vfp", 31)
alibava.set_par("Vfs", 150)

The names of the parameters that you can changed are listed in Table 5.

The DAQconfig class allows to set the parameters in the DAQconfig menu. The Analysis class allows to
extrac pedestals, noise, signal and signal over noise from the data monitoring system.

18

Alibava GUI

Example 3. Python Analysis class

class Analysis {
tuple hits;

int nhits;

tuple noise;

tuple ped;

tuple raw;

tuple signal;

tuple sn;

}

Example 4. Python DAQconfig

class DAQconfig {
int chan;

int sample_size;

int nevts;

int delay;

}

6.2. Plugin Examples..

Plugin examples can be found in the folder test on the distribution bundle.

6.2.1. C++ example

In order to make a useful plugin, you have to create your own class implementing some of the methods
in Plugin. An example of such a class implementing a user defined scan is shown in Example 5.

Example 5. A C++ plugin to perform a scan

/*
* test_plugin.cc

*
* This is an example of a plugin writen in C++.

* Look at the documentation in PLugin.h

19

Alibava GUI

*
* Created on: Jul 24, 2009

* Author: lacasta

*/
#include <iostream>
#include <sstream>
#include <Plugin.h>
#include "NewPoint.h"

/**
* This is an implementation of the Plugin class.

* It is a simple example that will make a scan.

* We may use the new_file method to store the parameters

* of the scan, new_event to determine when a new

* point is the scan is needed and new_point to store

* the actual values of

* the scan variables.

*/
class MyPlugin : public Plugin
{

private:
int npoints; // N. of pts we want for the scan
int nevt_per_point; // N. of pts acquired in each point
int run_type; // type of run
int current_event; // current event number
EventCntr handler; // The object that decides when

// to change to the next point

public:
// Constructor with default values
MyPlugin() :

npoints(50), nevt_per_point(1000), run_type(-1),
handler(nevt_per_point), current_event(0) {}

// destructor
~MyPlugin() {}

/**
* Declaration of Plugin methods to be implemented

*/
void new_file(std::string &S);
int start_of_run(int run_type, int nevts, int sample_size);
void end_of_run(std::string &S);
bool new_event(int evt);
void new_point(std::string &S);

};

void MyPlugin::new_file(std::string &rc)

20

Alibava GUI

{
rc = "New file";
std::cout << "new_file" << std::endl;

}

int MyPlugin::start_of_run(int runtype, int nevts, int sample_size)
{

run_type = runtype;
std::cout << "start_of_run " << nevts << " events. "

<< "Runtype " << run_type
<< std::endl;

if (sample_size > handler.value())
{

handler.value(sample_size);
nevt_per_point = sample_size;

}
handler.reset();
return npoints*nevt_per_point;

}

void MyPlugin::end_of_run(std::string &rc)
{

rc = "end_of_run";
std::cout << "end_of_run" << std::endl;

}

bool MyPlugin::new_event(int ievt)
{

current_event = ievt;
return handler(ievt);

}

void MyPlugin::new_point(std::string &rc)
{

std::ostringstream ostr;
ostr << "new point: " << current_event << std::endl;
std::cout << ostr.str();
rc = ostr.str();

}

/*
* This is the factory function or "hook" in terms of the

* Plugin dialog box where the instance of you Plugin

* implementation is created.

*/
extern "C"
{

21

Alibava GUI

Plugin *create_plugin()
{

MyPlugin *plugin = new MyPlugin();
return plugin;

}
}

In addition to that, we need a factory function that will create the class instance. The name of that
function should be specified in the Plugin dialog box when the hook name is required. An example of
such a factory function is shown at the very end of Example 5. Note that the function is declared as
extern "C". This is important since otherwise alibava-gui will not be able to find it when the shared
library is loaded. See the complete example, together with the make file (UserMakefile) in the test
folder of the distributed software. In your make files use the pkg-config program to get the compilation
flags and the path to to the alibava include files.

6.2.2. Python example

As already mentioned, plugins can also be written as Python scripts. An example similar to the previous
C++ plugin is shown in

Example 6. An example of a Python plugin

""" An example of an alibava plugin
This example implements a user defined scan

"""

import time
import inspect

#
Define some usefull constants
#
Block types
NewFile,StartOfRun, DataBlock, CheckPoint, EndOfRun = range(0,5)

Run types
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal,LastRType = range(0,7)

class MyPlugin(object):
""" This is an object that can be loaded by alibava to

be called at certain stages of the DAQ process.

"""
def __init__(self):

""" Initialization

22

Alibava GUI

"""
self.current_point = 0
self.current_event = 0
self.npoints = 50
self.nevt_per_point = 1000
self.handler = EventCounter(self.nevt_per_point)
self.run_type = -1

def new_file(self):
""" This is called at the beginning of each file

It should return a string with information
that will be stored in the file header

"""
print "new_file"
return "Hola !!!"

def start_of_run(self, run_type, nevts, sample_size):
""" This is called at the beginning of each run.

It should return the total number of events
that we want to acquire. As an extra input we
have the size of the data chunk that Alibava
acquires each time we activate the acquisition.

Run types are predefined in the variables:
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal

"""
info_msg("Starting a new run")
self.handler.start()
self.run_type = run_type
write_msg("start_of_run %d events. Run type: %d"

%
(nevts, run_type))

write_msg("...sample size %d" % (sample_size))

self.handler.reset()
if sample_size > self.handler.nevts:

print "Changing handler.nevts"
self.handler.nevts = sample_size
print "...new value", self.handler.nevts
self.nevt_per_point = sample_size

if run_type!= RadSource and run_type!=Laser:
return nevts

else:
Here we return the number of events we really
want to acquire given that we need to scan npoints
with nevt_per_point events per point.
return self.npoints * self.nevt_per_point

23

Alibava GUI

def end_of_run(self):
""" Called at the end of a run
"""
write_msg("end_of_run")
return "end_of_run"

def new_event(self, ievt):
""" This is called at the beginning of each event.

Should return True if we want alibava to call
the method new_point.

The input parameter is the current event number
"""
self.current_event = ievt
if self.handler.check(ievt):

return True
else:

return False

def move_axis(self):
""" A dummy function where we could, for instance,

move the axis that hole the laser or the source
"""
pass

def new_point(self):
""" Called every time that new_event returns True
"""
self.current_point += 1
self.move_axis()
print "new_point %d event %d" % (self.current_point,

self.current_event)
return "Current axis position is %d" % self.current_point

def create_plugin():
""" This is the ’hook’. This is the method called to

create an instance of the MyPlugin class
"""

write_msg("Loading %s" % __name__)
plugin = MyPlugin()
return plugin

Note that as in the case of C++ we also need here a factory function or hook to create the instance of the
Plugin and pass it to Alibava.

24

Alibava GUI

7. Hacking the alibava-gui code

alibava-gui is written in C++. The amount of classes and source files can be a little bit confusing for a
beginner that wants to know where and how should a change, improvement or patch be applied. In order
to facilitate that, a short description of the code organization will be given here.

There three main groups of objects in alibava-gui. In the first group we have the objects in charge of
talking to the USB port of Alibava, we then have the objects in charge of handling the configuration and,
finally the objects in charge of the data acquisition. The main object arbitrating all the interactions with
Alibava is AlibavaGUI, which also controls the graphical user interface (GUI) of alibava-gui

7.1. USB communication objects

The Alibava module can be read and configured via an USB port. alibava-gui has decoupled the raw USB
communication from the Alibava command generation and readout. This can be seen on Figure 21. The
main class, AlibavaGUI, has an object, Alibava, which is the responsible of generating the commands
for the hardware an of reading out the data. It does so with the help of yet another object interface,
USBport, which defines the protocol to interact with the USB port. The different implementations of an
USBport object have to do with the kernel driver one uses to access the USB data. There are, currently,
four of those incarnations of USBport which are USBd2xx, USBserial, USBFifo and USBemulator.

Figure 21. USB communications

USBserial makes used of the usbserial driver in Linux. USBd2xx uses the FTDI library provided by the
USB chip vendor. Finally, USBFifo creates a memory Fifo for the USB input from which the user reads.
All the raw operations with the USB device are delegated in a USBport object given at the instantiation.
The default for alibava-gui is USBFifo using USBserial. There is still a fourth one, USBemulator, that
contacts a software daemon that emulates the behavior of the Alibava board. With USBemulator one can
exercise the program without the need of having any hardware connected to the computer.

7.2. The DAQ objects

AlibavaGUI handles the acquisition process by communicating with a RunManager. Such an object has
a number of methods that are called a very precise stages of the acquisition. The role of the RunManager
is to impliment the differences of the different among the different run modes and make them invisible to
the DAQ manager which is AlibavaGUI.

Figure Figure 22 shows the different RunManager objects defined in the program. Each of them will
handle one of the different run modes.

25

Alibava GUI

Figure 22. The RunManager

7.3. The DAQ loop

The DAQ loop is sketched in Figure 23. There we can see the main players of the acquisition loop.
AlibavaGUI calls the open method which opens the device, sends a reset command and configures the
beetle and the trigger. Then, new_file and start_of_run methods of the Plugin are called. At this
stage the initialization is over and the program enters the acquisition loop by calling the acquire
method in AlibavaGUI. In Figure 23 we have illustrated a calibration run, but the behaviour is the same
for other run modes of alibava-gui.

Figure 23. DAQ loop

7.4. The configuration objects

Most of the alibava-gui parameters can be configured. The values can be saved to a configuration file or
restored from a previously saved configuration file. Each of the parts that can be configured store the data
in a class that derives from ConfigFile. Figure 24 shows all those classes. For each of them, there is a
class (same name with a GUI suffix) that allows to see, set and modifiy on dialog windows the current
values of the parameters.

Figure 24. Configuration objects

8. Data analysis.

Alibava GUI can store the data with 2 different formats. The first one is a binary file with a proprietary
format which is there for historical reasons. The second data format uses HDF5 which can easily be read
from python, Matlab or Octave. The following sections describe the two different formats.

26

Alibava GUI

8.1. The Alibava Data Format

8.1.1. Binary Data format

The data is stored in binary form. However, the format of the data files is quite simple and it is shown in
Table 2. For the sizes used in the tables we follow the convention:

uint32

An unsigned 32 bit integer

uint16

An unsigned 16 bit integer

int16

A signed 16 bit integer

int32

A signed 32 bit

char

An 8bit character (1 byte)

Table 2. Data Format

Data size and type Meaning
uint32 Time of start of run

int32 Run type. The run type can have various
values: 1. Calibration run

2. Laser Sync.

3. Laser

4. Rad. source

5. Pedestal

uint32 Header length (header_length)

27

Alibava GUI

Data size and type Meaning
header_length * char Header data. The header data contains some

information that is useful when analyzing the data.
The header is stored as an ASCII string and the
format is:• In the case of calibration of laser sync:

• Vn.n|npts;from;to;step

• In the case of laser or rad. source:

• Vn.n|num_events;sample_size

256 * double (32 bit) Pedestals (ADC units)

256 * double (32 bit) Noise (ADC units)

Datablock Following the overall header of the file describing
the parameters of the alibava run there are a
number of DataBlocks each containing specific
information. All the data blocks have the same
structure, which is described in Table 4. The
possible DataBlocks are:• NewFile

• StartOfRun

• DataBlock

• CheckPoint

• EndOfRun

The file data has an overall header, containing the running parameters of Alibava and then a series of data
blocks. The data blocks have all the same format, which is described in Table 3. The data itself is one of
those data blocks and is the only one which is always written by alibava-gui. The rest are only written
when the user activates a plugin and any of the methods returns a data buffer.

Table 3. Format of a data Block

Data size and type Meaning
uint32: 0xcafennnn Header of the data block. nnnn is the data block

type. The different types can be: 1. NewFile.
2. Start of Run

3. Data

4. Check Point

5. End of Run

28

Alibava GUI

Data size and type Meaning
uint32 The size in bytes of the block data

size * char The block data.

Only the Data block has a fixed format, given by Alibava. The format of the other blocks depends on the
plugin activated by the user. The format of the Data block in show in Table 4

Table 4. Format of the Data block

Data size and type Meaning
0xcafe0002 The block data

522 The size of the block data

uint32 Clock counter since the last MB reset. The clock is
around 40 MHz but for an accurate value it should
be calibrated with a pulse generator used as trigger.

uint32 Time as read in the TDC. T = 100.0*(ipart +
(fpart/65535.)) whereipart

(X & 0xFFFF0000)>>16

fpart

sign(ipart)*(X & 0xFFFF)

uint16 Coded Temperature (T = 0.12*X-39.8)

256 * uint16 The ADC values of the 256 channels

double (32 bit) An extra value that corresponds to the scanned
variable in the predefined scans: Calibration
(charge) and Laser synchronization (delay)

An example on how to deal with the data can be found in AsciiRoot.cc in the root_macros folder.

8.1.2. The HDF5 data format

In HDF5 the data is structured in groups each having different information. There are 2 main groups. The
header group contains general information about the run. It has the setup attribute that specifies the type
of run and some other useful information, like the time of the acquisition. It also contains the pedestals
and noise of the active channels. The events group has four tables with contain the data collected for each
event: the value on each channel in signal, the time given by the TDC (see Figure 6), the temperature
measured and a sort of timestamp as a 40MHz clock counter since the last reset of the mother board. See
Figure 25.

29

Alibava GUI

Figure 25. HDF5 file data format

In the Calibration or Laser Scan runs the scan group contains the points at which the scanned values
change as well as the description of the scan. Have a look at HDFRoot.cc which provides the data class
that handles the hdf5 data.

8.2. Analysing the data

By knowing the data format you can write your own program to analyze the data in your preferred
language. This is the recommended way since the Alibuava examples cannot know the particularities of
the end-user sensor and data. However, Alibava provides a collection of root macros (still evolving) to
read the data files and produce histograms. The root macros are in the root_macros folder of the alibava
distribution. If you have ROOT already installed during the alibava installation, you will find, at the end
of the installation process the ROOT libraries in INSTALL_DIR/lib/alibava/root. INSTALL_DIR
is usually /usr/local unless you specify it differently as explained in Appendix C.

If you are not planning to modify the source code of the root macros you can use those libraries. To do
so, you will need in your working directory a rootlogon.C file that loads them when root is initialized
from within that directory. It could look like the one showed in Example 7

Example 7. rootlogon.C for using precompiled ROOT libraries

#define DYNPATH "INSTALL_DIR/lib"
#define INCPATH "INSTALL_DIR/include/alibava/root"

void SLload(const char *lnam)
{

if (gSystem->Load(lnam))
cout << ":> " << lnam << " NOT loaded " << endl;

else
cout << ":> " << lnam << " loaded " << endl;

}

void rootlogon()
{

// Add the library folder in the dynamic path so that ROOT finds
// the library
TString ss = gSystem->GetDynamicPath();
gSystem->SetDynamicPath(ss+":"+DYNPATH);

30

Alibava GUI

// Add the Alibava include path in the ROOT include path so that
// you can include Alibava header files in your own macros
gInterpreter->AddIncludePath(INCPATH);

// Load the library
std::cout << "==" << std::endl;
SLload("libAlibavaRoot.so");
std::cout << "==" << std::endl;

// This is cosmetics
gROOT->SetStyle("Plain");
gStyle->SetPalette(1);
init_landau();

}

If you want to make modifications to the source of the ROOT macros you will need to run make on the
root_macros folder and, eventually, make install to install the "modified libraries". You can just copy
the libAlibavaRoot.so (libAlibavaRoot.dylib in MAC OSX) in a place where ROOT can find it.

In any of the two cases, the best is to start executing a the sin_preguntas function that will do almost
everything for you.

Example 8. The make-all-for-you function prototype

void sin_preguntas(DataFileRoot *A, const char *data_file0, const char*
cal_file0, const char *ped_file0, int polarity0, bool dofittrue, int tcd05,
int tdc115);

where the arguments have the following meaning:

A

a pointer to a user supplied DataFileRoot (or descendant) object. Usual implementations are
AsciiRoot, to interpret the data with the binary data as described in Section 8.1.1, or an HDFRoot
object to interpret the HDF5 data described in Section 8.1.2. One can also inherit from any of these
two to interpret the data produced by a user defined plugin. See Section 8.3. The easiest way to get
the pointer is with the static DataFileRoot method OpenFile with is able to determine the file type
and creates the proper class pointer.

DataFile *DataFileRoot::OpenFile(const char *file_path, const char *pedfile0,
const char *gainfile0);

31

Alibava GUI

data_file

The path of the data file to be analyzed. If NULL, the current file in A will be used

cal_file

The path of a calibration file. It can be an Alibava data file produced during a calibration run or an
ASCII text file with as many lines as channels with gain and offset in each line. If you do not have
this file, set 0 here. The only difference is that if the calibration file the histogram units will be in
electrons. Otherwise they will be in ADC units.

ped_file

compute pedestals or an ascii text file with as many lines as channels and pedestal and noise for
each channel. If no file is given, sin_preguntas will use the data file to compute pedestals.

polarity

this is the expected polarity of the signal (or the bias voltage): -1 for negative signals and +1 for
positive signals.

dofit

this is a boolean that specifies whether the program should try to fit a landau to the signal histogram.
If true is given it will do the fit.

tdc0, tdc1

Define a time window around the peak of the pulse shape to produce the signal histogram

In any case you should have a look there to see how the data is handled in the usual cases. Have a look at
analysis.cc to see how the DataFileRoot class is used and how data is analyzed in the examples
provided.

Warning

Do not forget that sin_preguntas is just an example that assumes that you are
reading silicon strip sensors. For your particular setup, you may need to handle the
data differently.

8.3. The DataFileRoot class

In the root_macros folder you will find a number of example files to analyze the data. They do not intend
to be a standard but just examples. At least this is how they were born, though they have been evolving
and, as of today, they are too complicated an example. However the DaraFileRoot class can still serve as
a good tool to read the files and to access the current data to make your own analysis.

32

Alibava GUI

Most of the methods in DataFileRoot are applied indistinctible to all the channels in a chip of the DB.
However, some of them can be applied just to a set of channels. These sets or regions are defined with the
ChanList class. This class is described in Example 9.

Example 9. The ChanList class definition

class ChanList {
public ChanList(const char * list_def = 0);

public void Set(const char * list_def);
// Channel getter/setter functions

const int Nch();

const int Chan(int i);

const int operator[](int i);
// Hit getter/setter functions

void add_hit(const Hit & h);

const bool empty();

const int nhits();

void clear_hits();

const const Hit & get_hit(int i);

const double CommonMode();

const double Noise();

}

A ChanList is defined by string which contains channel numbers or channel ranges separated by
commas. For instance "1,2,10-20" creates a channel list containing channel 1, 2 anf channels from 10
to 20, both included. A ChanList may also contain an array of Hit objects that represent the clusters
found in this region. The clustering methods of DataFileRoot. The Hit class is defined in Example 10.
A Hit represents a cluster, with the center strip (the one with highest amplitude), the channel number of
the left and right limits and the signal.

Example 10. The Hit class definition

class Hit {
Hit(int center = 0, int left = 0, int right = 0, double signal = 0);

~Hit();

const int center();

const int left();

const int right();

const int width();

const double signal();

}

The DataFileRoot class definition is shown in Example 11. Only a few methods are show here. For the
complete definition of the class, please look in DataFileRoot.h.

33

Alibava GUI

Example 11. The DataFileRoot class definition

class DataFileRoot {
public AsciiRoot(const char * data_file);

public ~AsciiRoot();

public enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};

public bool valid();

public void open(const char * data_file);

public void close();

public void rewind();

public int read_event();

public void process_event(bool do_common_mode = true);
// Plugin extra data Blocks

public virtual void new_file(int size, const char * data);

public virtual void start_of_run(int size, const char * data);

public virtual void check_point(int size, const char * data);

public virtual void new_data_block(int size, const char * data);

public virtual void end_of_run(int size, const char * data);

public void set_data(int size, const unsigned short * data);
// Analysis methods

public TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);

public void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);

public void load_pedestals(const char * file_name);

public void save_pedestals(const char * file_name);

public void load_gain(const char * file_name);

public void load_masking(const char * file_name);
// Anaylsis in strip regions

public int n_channel_list();

public void add_channel_list(const ChanList & C);

public void clear_channel_lists();

public ChanList get_channel_list(int i);

public void find_clusters(const ChanList & C);

public void common_mode(const ChanList & C, bool correct = false);
// Debugging methods

public void spy_data(bool with_signal = false, double t0 = 0, double t1 = 0, int nevt = 1);

public TH1 * show_pedestals();

public TH1 * show_noise();

}

By default, DataFileRoot only reads the DataBlock which is the only that has a more or less defined
format. If the user has created other data blocks with a user-defined plugin, then he/she will have to
define a class which derives from AsciiRoot and implements the methods that receive the data from those
extra blocks. Those methods are explained below

AsciiRootconstchar *data_file

The constructor. data_file is the path of the data file.

34

Alibava GUI

public int read_event();

Call this method to read the next event in the file. It will return 0 in case of success and non zero
otherwise. The usual way to use it is by looping while read_event returns 0.

public void process_event(bool do_common_mode = true);

By calling this method, DataFileRoot will remove pedestals from the raw data and if specified in the
input argument it will correct for common mode. The usual procedure is shown in the example
below.

DataFileRoot *data;

...

while (data->read_event() == 0)
{

// Remove pedestals and common mode
process_event();

// Find clusters, analyze the data, etc.

}

public void new_file(int size, const char * data);

This method is called whenever a NewFile block is found on the file. The arguments are the size of
the block data and the data itself (see Table 3).

public void start_of_run(int size, const char * data);

This method is called when a StartOfRun block is found on the data file. The arguments are the size
of the block data and the data itself (see).

public void check_point(int size, const char * data);

This method is called when a CheckPoint block is found in the data file. The arguments are the size
of the block data and the data itself (see Table 3).

void new_data_block(int size, const char * data);

This method is called when a DataBlock is found in the data file. The main use of this method is to
decode the event data when a Plugin::filter_event method (see Example 1) has modified the default
data format during the acquisition. The arguments are the size of the block data and the data itself
(see Table 4). This method should call set_data in order to set the active channels and their ADC

35

Alibava GUI

values.

Warning

Note that when you change the default format in the DataBlock, the
pedestal and noise values stored in the file loose their meaning and you
will have to recompute them with compute_pedestals or
compute_pedestals_fast

void end_of_run(int size, const char * data);

This method is called when an EndOfRun block is found in the data file. The arguments are the size
of the block data and the data itself (see Table 3).

void set_data(int size, const unsigned short * data);

This method should be used when the user has modified the DataBlock format. You should provide
the number of channels (size) and an array with the ADC values (data)

void load_pedestals(const char * file_name);

void save_pedestals(const char * file_name);

load/save pedestals from/to a file. The file is a simple ASCII file, each line containing the pedestal
and noise values of a channel. Line i corresponds to channel i.

void load_gain(const char * file_name);

Load the gain factors (ADC counts to electrons) of the channels. The input file is an ASCII file,
each line containing the channel number followed by the gain value.

TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);

This method computes the pedestals in the usual way. What it does is to produce, for each channel,
a histogram with all the ADC values and fit a gaussian to the peak with the lowest mean. The
pedestal and noise of that channel will be the mean and the sigma of the gaussian fit. It returns a 2D
histogram showing the distribution of all the channels. The method parameters are:

• mxevts: number of events to use in the pedestal calculation. If negative, then all the events in the
file will be used.

• do_cmmd: if set to true, the algorithm will make common mode subtraction on an event by event
basis.

void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);

This method computes the pedestals with a somewhat different algorithm than
compute_pedestals. It tries to follow any change of the pedestal and the noise of the channels
and updates their values. It is the method that alibava-gui uses to monitor the data during the
acquisition. For analysis one should use compute_pedestals.

36

Alibava GUI

public void find_clusters(const ChanList & C);

This method finds the clusters in a given event. The method will store the clusters as Hit objects in
the ChanList given as input. Note that the hits found will be appended to the array so that you
might need to clear the hit list before calling find_clusters.

The algorithm to find the clusters is very simple. It starts by searching the channel with highest
amplitude. If the channel signal over noise ratio is higher than a given value, the seed cut, then we
append the neighbours at the right and left whose signal over noise value is above certain value, the
neighbour cut. The procedure is repeated until no channel is found above the seed cut.

void spy_data(bool with_signal = false, double t0 = 0, double t1 = 0, int nevt = -1);

This method is very useful to debug the data. It shows a pannel of histograms for a single event, like
the raw data, processed data, common mode noise, found clusters, etc. If the first argument is true it
will only show events with signal, skipping the events where no clusters have been found. The
second argument is the number of events you want to see. The default is to show only one event at a
time, but you could see as many as the number indicated.

For more information take a look at DataFileRoot.h and the source code in DataFileRoot.cc. In the test
folder of the distribution bundle you will also find some examples.

9. SOAP: Communicating with alibava-gui

alibava-gui can also work as a SOAP server. This means that we can send a number (very limited) of
commands to the alibava-gui process to start or stop a run and, also, to retrieve some information about
the status of the acquisition. The SOAP server and client libraries are implemented using the gSOAP
toolkit for Web Services11

The SOAP commands are summarized below:

void getStatus(in int request, out Status status);

Returns the status of the acquisition in a structure of type Status, described in Example 12. The
request parameter can be ignored and one can send any value, usually 0.

void Reset(in value);

Resets the board

void startRun(in DAQParam daqParam, out base64binary data);

Starts a run with the parameters specified in a structure of type DAQParam described in Example
14. It returns a data block which contains various histograms. This is a synchronous methods and

37

Alibava GUI

will not return until the run is over.

void startRunAsync(in daqParam);

Starts a run with the parameters specified in a structure of type DAQParam described in Example
14. It returns immediately. You should use the getStatus method to check the status of the run.

void Reset(in value);

Resets the board

void stopRun(in int value, out int response);

Stops the current run. The value parameter has no meaning and any value is accepted. The output
parameter, response, with return 0 if the operation was succesful and an error code otherwise.

void setDataFile(in string fileName, out int response);

Sets the name of the data file and forces alibava-gui to log data into that file. The output parameter,
response, with return 0 if the operation was succesful and an error code otherwise.

void setParameter(in ParValue value, out int response);

Set the values of some running parameters like some registers of the Beetle chips.

ParValue, as shown in Example 13 is a pair of a name and a value. The name identifies the
parameter. Parameter names are shown in Table 5.

void getHistogram(in string hstName, in string hstType, out int response);

Gets the picture of the historam hstName with type hstType, which can be any of: png, jpg, svg, eps
and pdf. The names of the available histograms are listed in Table 6. Note, however, that the
histograms are produced only when the server is run in GUI mode.

Example 12. The Status structure

class Status {
public string status;

public time time;

public int nexpected;

public int ntrigger;

public double rate;

public string run_type;

public double value;

}

38

Alibava GUI

Example 13. The ParValue struc

class ParValue {
public string name;

public string value;

}

Example 14. The DAQParam structure

class DAQParam {
public int runType;

public int numEvents;

public int sampleSize;

public int nbin;

public double xmin;

public double xmax;

}

Table 5. Names of the parameters that can be changed with setParameter. The table does not show
the parameters tht refer to a beetle register. Those names are the same as in Table A-1

Parameter Names Description
trgIn Switches ON/OFF Trigger In

thrsIn1 Threshold for the first TrigIn comparator

thrsIn2 Threshodl for the second TrigIn comparator

trgAND Set AND as the operation between In1 and In2

trgOR Set OR as the operation between In1 and In2

trgPulse Switches ON/OFF Pulse

thrsPulse- Nevative threshold for TrigPulse

thrsPulse+ Positive threshold for TrigPuls

enableComp Switches ON/OFF the Beetle comparator

trackMode Set the comparator working mode to track

pulseMode Set the comparator working mode to pulse

compPolarity Sets the polarity for the comparator

mainTh It sets the main comparator settings. The parameter
name can be followed by a number specifying a
particular chip. If no number is given, the valu will
be applied to to all chips.

deltaTh The parameter name can be followed by a number
specifying a particular chip. If no number is given,
the valu will be applied to to all chips.

39

Alibava GUI

Parameter Names Description
trimCh<n> Sets the vector of corrections for trimming the

threshold. <n> is the chip number and should be
specified.

maskCh<n> Sets the vector of corrections for trimming the
threshold. <n> is the chip number and should be
specified.

fileFormat Set the data format in the data file. Valid values are
hdf and alibava

Table 6. Names of the histograms that can be retrieved as pictures.

Histogram Name Description
hstSignal The spectrum

hstPedestal The pedestals of all the channels

hstNoise The noise of all the channels

hstHitmap The hitmap

hstTemp The tracer of the measured temperature

hstTime The tracer of the TDC time

hstEvent The event viewer. It show, for a given event, the
content of each channel.

hstCmmdNoise The noise from the common mode

hstCmmd The common mode

The data returned by the startRun consists of 3 histograms in most cases. The first contains the spectrum,
the second the mean value of the signal seen by each channel and the third the rms of the signal seen by
each channel. In a Pedestal run the last two histograms would correspond to the pedestals and noise
respectively. The format of the data is described in Table 7.

Table 7. Format of the data from startRun

Size and type Description
int32 number of histograms

For each histogram
int32 number of bins

double xmin

double xmax

nbin * double data chunk with nbin doubles

There are available a Python and a C++ wrap classes to hide the SOAP complexity to the user. These are
described in Section 9.1.

40

Alibava GUI

9.1. SOAP examples

The test folder in the distribution contains some examples that may help understanding the procedure to
communicate with alibava-gui via SOAP. The examples are written in two languages, python and C++.
There are Python and C++ classes that hide the complexity of the SOAP implementation and privide a
much easier interface. The interface is very similar in both programming languages.

Example 15. SOAP interface

class Alibava {
Alibava(const char * uri = 0);

void connect(in const char * uri);

getStatus(out Status &status);

Reset(in int val);

setDataFile(in string &file_name);

public int setParameter(in string &name, in string &value);

int getMask();

void stopRun();

startPedestalRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);

startSourceRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);

startLaserRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);

startCalibrationRun(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 30000.0, bool is_charge = true);

startLaserSync(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 512.0);

startChargeScan(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 30000.0);

}

The histograms returned by the methods that start a synchronous run are retrieved differently in python
and C++. The histograms are returned directly by the method in python, while in C++ one need to
retrieve them by calling the get_histogram method. See the examples below.

9.1.1. Python example

In the case of python, we recomend to have SOAPpy installed in the system. It can be downloaded from
http://sourceforge.net/projects/pywebsvcs/files/SOAP.py. It is also in most of the Linux distributions so
the best is to use the one provided by your particular distribution if you are using Linux. The example
below uses this python package. There are two parts. One that hides all the complexity of the SOAP data
types intrinsic to Albava and the other the one that contains your actual commands.

The first one is shown in Example 16 and the second in Example 17.

41

Alibava GUI

Example 16. alibavaSOAP: internals to alibava SOAP structures in Python

#!/usr/bin/env python
"""
Example of a soap client for alibava
"""
import sys
from alibavaSOAP import Alibava, Status
import SOAPpy

def main(host="localhost", port=10000):
server = Alibava(host, port)

S = Status(server.getStatus())
print S
R = server.stopRun()

R = server.startPedestalRun(1000)
S = Status(server.getStatus())
print S

R = server.startLaserRun(1000, nbin=32, xmin=-512, xmax=512)
S = Status(server.getStatus())
print S
for hst in R:

print hst

server.setDataFile("alibava_data.dat")
R= server.startSourceRun(1000, nbin=32)
for hst in R:

print hst

R = server.startCalibrationRun(100, 20, 0, 30000)
for hst in R:

print hst

#SOAPpy.Config.debug=1
server.setParameter("Isha", 32)
server.setParameter("Vfs", 19)
server.setParameter("trgPulse",1)

mask=”

42

Alibava GUI

for i in range(0,128):
if i%4 : mask+=’1’
else: mask+=’0’

server.setParameter("maskCh1", mask)

trim=”
for i in range(0,128):

if i%4 : trim+=’0,’
else: trim+=’1,’

server.setParameter("trimCh1", trim)

if __name__ == "__main__":
try:

host = sys.argv[1]
except IndexError:

host = "localhost"

try:
port = int(sys.argv[2])

except IndexError:
port = 10000

main(host, port)

Example 17. testSoap.py: an example of use

#!/usr/bin/env python
"""
Example of a soap client for alibava
"""
import sys
from alibavaSOAP import soapClient, Status

def main(host="localhost", port=10000):
connect to the server
server = soapClient(host, port)

Get the current status and print it
S = server.getStatus()

43

Alibava GUI

print S

Stop the run
R = server.stopRun()

Start a pedestal run with 1000 events
R = server.startPedestalRun(1000)

Start a Laser Run. Set the parameters of the
histogram axis
R = server.startLaserRun(1000, nbin=32, xmin=-512, xmax=512)
for hst in R:

print hst

Set the name of the data file and start a Source Run
server.setDataFile("alibava_data.dat")
R= server.startSourceRun(1000, nbin=32)
for hst in R:

print hst

if __name__ == "__main__":
try:

host = sys.argv[1]
except IndexError:

host = "localhost"

try:
port = int(sys.argv[2])

except IndexError:
port = 10000

main(host, port)

9.1.2. C++ example

The alibava package provides libraries for communicating with alibava-gui. The test folder of the
distribution contains an example, which also shown in Example 18. Look at the given Makefile to see
which are the requered includes and libraries. The example shown here also uses the Histogram class
whose implementation can also be found in the test folder of the distribution.

44

Alibava GUI

Example 18. C++ soap client

#include <iostream>
#include <alibavaClient.h>

int main(int argc, char **argv)
{

const char *uri = "http://localhost:10000";
Alibava client;

if (argv[1])
uri = argv[1];

client.connect(uri);

ns1__Status status;
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.startPedestalRun(5000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.startLaserRun(5000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.setParameter("fileFormat", "hdf5");
client.setDataFile("/tmp/data_file.dat");
client.startSourceRun(10000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;
client.get_histogram(0)->Print(std::cout);

return 0;
}

45

Alibava GUI

9.2. Monitoring Alibava runs from abroad

The SOAP server also provides a web service where you can monitor the current status of your run. The
interface is really simple. The addres you have to give to the browser is

http://address_of_your_computer:nnnn

where nnn is the port you have given to the SOAP server (10000 by default). You may need to enable
that port in order to do that from another computer. Figure 26 shows an exmple of what the server will
provide. It will, essentially, be the histograms that are shown at the main window of the alibava-gui
application.

Figure 26. Web server

A. Parameters of the Beetle chip

This appendix lists the parameters of the Beetle chip as described in the original work by S. Löchner and
M. Schmelling (The Beetle Reference Manual, LHCb-2005-105).

Table A-1. Beetle parameters and default values

Name Range Step Nominal Reg. content Description
Itp 0-2 mA 7.8 µA 0 µA 0x00 test pulse bias

current

Ipre 0-2 mA 7.8 µA 600 µA 0x4C preamplifier bias
current

Isha 0-2 mA 7.8 µA 80 µA 0x0A shaper bias
current

Ibuf 0-2 mA 7.8 µA 80 µA 0x0A front-end buffer
bias current

Vfp 0-2.5 V 9.8 mV 0 mV 0x00 preamplifier
feedback voltage

Vfs 0-2.5 V 9.8 mV 0 mV 0x00 shaper feedback
voltage

Icomp 0-2 mA 7.8 µA 40 µA 0x05 comparator bias
current

46

Alibava GUI

Name Range Step Nominal Reg. content Description
Ithdelta 0-2 mA 7.8 µA -- -- current defining

incremental
comparator
threshold

Ithmain 0-2 mA 7.8 µA -- -- current defining
common
comparator
threshold

Vrc 0-1.25 V 4.9 mV 0 mV 0x00 comparator RC
time constant

Ipipe 0-2 mA 7.8 µA 100 µA 0x0D pipeamp bias
current

Vd 0-2.5 V 9.8 mV 1275 mV 0x82 pipeamp reset
potential

Vdcl 0-2.5 V 9.8 mV 1030 mV 0x69 pipeamp
reference voltage

Ivoltbuf 0-2 mA 7.8 µA 160 µA 0x14 pipeamp buffer
bias current

Isf 0-2 mA 7.8 µA 200 µA 0x1A multiplexer
buffer bias
current

Icurrbuf 0-2 mA 7.8 µA 800 µA 0x66 output buffer
bias current

Latency 10-160 -- 160 0xA0 trigger latency

ROCtrl -- -- cf. table C.11 readout control

RclkDiv 0-255 -- 0 0x00 ratio between
Rclk and Sclk

CompCtrl -- -- See Table A-2 comparator
control

CompChTh 0-31 -- -- -- comparator
channel
threshold shift
register
implementation
and Beetle
revision Id.

CompMask -- -- 0 0x00 comparator mask
shift register
implementation

47

Alibava GUI

Name Range Step Nominal Reg. content Description
TpSelect -- -- 0 0x00 test pulse

selection shift
register
implementation

SEUcounts 0-255 -- -- -- sum of Single
Event Upsets

The following table describes the bits in the CompCtrl reagister

Table A-2. Bits in the CompCtrl register

Bit Function Description
0 DisableCompLVDS 0: enable comparator LVDS output

ports 1: disable comparator LVDS
output ports

1 CompPolarity 0: inverting 1: non-inverting

2 PipelineMode 0: analogue readout 1: binary
readout

3 CompDisable 0: enable comparator 1: disable
comparator

4 CompMode 0: track mode 1: pulse mode

5-7 not used --

B. Start-up guide: getting the motherboard out
of the box...

B.1. Basic connections and initialization of the system

There are a number of very easy steps required to get the system ready. Please read the Alibava GUI
manual first to have the data acquisition software properly installed and ready. Then, the daughter board
should be connected to the motherboard, provide power to the later and connect it to the USB port of the
computer.

Figure B-1 shows the main ALIBAVA system connections.

Figure B-1. Alibava system sketch with all the needed connections.

48

Alibava GUI

These are the steps that must be followed in order to initialize the system:

1. Connect the daughter board to the mother board (item 2 of Figure B-2) by means of the flat cable
(the IDC connectors have a defined position both in the daughter board and the mother board).

2. Power on the system by means of connecting the AC/DC adapter to the motherboard power
connector (item 1 of Figure B-2). The red and the green LEDs of the motherboard (item 8 of Figure
B-2) are switched on.

3. Connect the USB cable to a USB port on the computer where the software is installed and to the
USB connector of the motherboard (item 6 of Figure B-2).

4. Push the reset button (item 9 of Figure B-2) of the motherboard to initialize the system.

5. Launch the software following the software documentation. Now the hardware has been
synchronized with the software and the red LED of the motherboard will be switched off (item 8 of
Figure B-2).

At this point the system has been initialized correctly and it is ready for preparing the required
connections for the laser or the radioactive source runs.

The detector(s) of the daughter board must be powered on by means of an independent power supply.
The daughter board has a Lemo power connector (with a defined position for connecting the power plug
of the cable) dedicated for this supply.

Calibrations and pedestals acquisitions can be carried out at this point once the detector(s) have been
powered on.

Figure B-2. Connectors, switches and LEDs of the ALIBAVA motheboard.

B.2. Laser setup connections

In order to take laser acquisitions the motherboard has a trigger output which uses the LEMO connector
next to the USB connector (item 7 of Figure B-2) for exciting a pulse generator which will drive the laser.
The name of this output (TRIG OUT) is printed on the motherboard next to the corresponding connector.

The input of the pulse generator must have a 50Ω termination and a coaxial cable of 50Ω must be used
for this connection. The levels of this motherboard output are 3.3V LVTTL/LVCMOS compatible.

49

Alibava GUI

B.3. Radioactive setup connections

For this setup the motherboard has three trigger inputs which use three LEMO connectors (item 5 of
Figure B-2). The name of each trigger input is printed on the motherboard next to the corresponding
connector.

The TRIG IN1 and TRIG IN2 trigger inputs are intended for signals coming from a photomultiplier.
They are terminated with a 50Ω resistor and the input range is ±5V (do not exceed this input range).
Therefore a 50Ω coaxial cable should be used for these inputs. These inputs are discriminated using a
discrimination level. Look the software documentation for configuring the discrimination threshold of
each input (Trigger Configuration). These inputs can be ORed or ANDed (coincidence) once thay have
been discriminated. Look the software documentation to carry out this configuration (Trigger
Configuration).

The TRIG PULSE IN input is intended for a digital current/voltage pulsed signal (for instance a signal
photomultiplier signal discriminated externally). It can accept positive and negative pulses (NIM logic,
CMOS logic and TTL logic). This input is terminated with a 50Ω resistor and the input range is ±5V
(±100mA). This input has a positive threshold and a negative threshold in order to distinguish the input
signal levels (for example if a 3.3V LVCMOS logic is used, a valid value for the positive threshold could
be 1000mV and -1000mV for the negative threshold). Look the software documentation to configure
these thresholds (Trigger configuration).

The selection between the trigger inputs can be carried out with the software as well (Trigger
Configuration).

B.4. Probing the Beetle ouput signals with an
oscilloscope

There are two analogue outputs at the motherboard in order to probe the analogue output signal of each
Beetle chip before they are digitized. These output signals use the two vertical LEMO connectors of the
motherboard (item 3 of the Figure B-2). These outputs must be connected to the 50Ω input of an
oscilloscope. A 50Ω coaxial cable must be used for these connections.

B.5. ADC input range modification

There are two rotary switches of three positions on the motherboard (item 4 of Figure B-2) to modify the
ADC input range for each Beetle chip. The position 2 corresponds to an input range of ±512mV (with a
resolution of 1 mV). The position 3 corresponds to an input range of 1024mV (with a resolution of 1
mV) only for positive signals. The position 1 corresponds to a input range of -1024mV (with a resolution
of 1 mV) only for negative signals.

50

Alibava GUI

C. Installing the software

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005, 2006 Free Software Foundation,
Inc.

This file is free documentation; the Free Software Foundation gives unlimited permission to copy,
distribute and modify it.

C.1. Basic installation

Briefly, the shell commands ‘./configure; make; make install’ should configure, build, and install this
package. The following more-detailed instructions are generic; see the ‘README’ file for instructions
specific to this package.

The ‘configure’ shell script attempts to guess correct values for various system-dependent variables used
during compilation. It uses those values to create a ‘Makefile’ in each directory of the package. It may
also create one or more ‘.h’ files containing system-dependent definitions. Finally, it creates a shell script
‘config.status’ that you can run in the future to recreate the current configuration, and a file ‘config.log’
containing compiler output (useful mainly for debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’ and enabled with
‘--cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed up reconfiguring.
Caching is disabled by default to prevent problems with accidental use of stale cache files.

If you need to do unusual things to compile the package, please try to figure out how ‘configure’ could
check whether to do them, and mail diffs or instructions to the address given in the ‘README’ so they
can be considered for the next release. If you are using the cache, and at some point ‘config.cache’
contains results you don’t want to keep, you may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create ‘configure’ by a program called ‘autoconf’.
You need ‘configure.ac’ if you want to change it or regenerate ‘configure’ using a newer version of
‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type ‘./configure’ to configure the
package for your system.

Running ‘configure’ might take a while. While running, it prints some messages telling which
features it is checking for.

51

Alibava GUI

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with the package.

4. Type ‘make install’ to install the programs and any data files and documentation.

5. You can remove the program binaries and object files from the source code directory by typing
‘make clean’. To also remove the files that ‘configure’ created (so you can compile the package for a
different kind of computer), type ‘make distclean’. There is also a ‘make maintainer-clean’ target,
but that is intended mainly for the package’s developers. If you use it, you may have to get all sorts
of other programs in order to regenerate files that came with the distribution.

C.2. Compilers and Options

Some systems require unusual options for compilation or linking that the ‘configure’ script does not
know about. Run ‘./configure --help’ for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters by setting variables in the command
line or in the environment. Here is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

*Note Defining Variables::, for more details.

C.3. Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by placing the object
files for each architecture in their own directory. To do this, you can use GNU ‘make’. ‘cd’ to the
directory where you want the object files and executables to go and run the ‘configure’ script. ‘configure’
automatically checks for the source code in the directory that ‘configure’ is in and in ‘..’.

With a non-GNU ‘make’, it is safer to compile the package for one architecture at a time in the source
code directory. After you have installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

C.4. Installation names

By default, ‘make install’ installs the package’s commands under ‘/usr/local/bin’, include files under
‘/usr/local/include’, etc. You can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’.

52

Alibava GUI

You can specify separate installation prefixes for architecture-specific files and architecture-independent
files. If you pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses PREFIX as the
prefix for installing programs and libraries. Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like ‘--bindir=DIR’ to specify
different values for particular kinds of files. Run ‘configure --help’ for a list of the directories you can set
and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix or suffix on their
names by giving ‘configure’ the option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

C.5. Optional Features

Some packages pay attention to ‘--enable-FEATURE’ options to ‘configure’, where FEATURE indicates
an optional part of the package. They may also pay attention to ‘--with-PACKAGE’ options, where
PACKAGE is something like ‘gnu-as’ or ‘x’ (for the X Window System). The ‘README’ should
mention any ‘--enable-’ and ‘--with-’ options that the package recognizes.

For packages that use the X Window System, ‘configure’ can usually find the X include and library files
automatically, but if it doesn’t, you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘--x-libraries=DIR’ to specify their locations.

C.6. Specifying the System Type

There may be some features ‘configure’ cannot figure out automatically, but needs to determine by the
type of machine the package will run on. Usually, assuming the package is built to be run on the _same_
architectures, ‘configure’ can figure that out, but if it prints a message saying it cannot guess the machine
type, give it the ‘--build=TYPE’ option. TYPE can either be a short name for the system type, such as
‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

OS KERNEL-OS

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t included in this
package, then this package doesn’t need to know the machine type.

53

Alibava GUI

If you are _building_ compiler tools for cross-compiling, you should use the option ‘--target=TYPE’ to
select the type of system they will produce code for.

If you want to _use_ a cross compiler, that generates code for a platform different from the build
platform, you should specify the "host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

C.7. Sharing Defaults

If you want to set default values for ‘configure’ scripts to share, you can create a site shell script called
‘config.site’ that gives default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’. ‘configure’ looks
for ‘PREFIX/share/config.site’ if it exists, then ‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script. A warning: not all ‘configure’
scripts look for a site script.

C.8. Defining Variables

Variables not defined in a site shell script can be set in the environment passed to ‘configure’. However,
some packages may run configure again during the build, and the customized values of these variables
may be lost. In order to avoid this problem, you should set them in the ‘configure’ command line, using
‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to an Autoconf bug. Until the
bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

C.9. ‘configure’ Invocation

‘configure’ recognizes the following options to control how it operates.

‘--help’

‘-h’

54

Alibava GUI

Print a summary of the options to ‘configure’, and exit.

‘--version’

‘-V’

Print the version of Autoconf used to generate the ‘configure’ script, and exit.

‘--cache-file=FILE’

Enable the cache: use and save the results of the tests in FILE, traditionally ‘config.cache’. FILE defaults
to ‘/dev/null’ to disable caching.

‘--config-cache’

‘-C’

Alias for ‘--cache-file=config.cache’.

‘--quiet’

‘--silent’

‘-q’

Do not print messages saying which checks are being made. To suppress all normal output, redirect it to
‘/dev/null’ (any error messages will still be shown).

‘--srcdir=DIR’

Look for the package’s source code in directory DIR. Usually ‘configure’ can determine that directory
automatically.

‘configure’ also accepts some other, not widely useful, options. Run ‘configure --help’ for more details.

Notes
1. Robert A. van Engelen and Kyle Gallivan, The gSOAP Toolkit for Web Services and Peer-To-Peer

Computing Networks, in the proceedings of the 2nd IEEE International Symposium on Cluster

55

Alibava GUI

Computing and the Grid (CCGrid2002), pages 128-135, May 21-24, 2002, Berlin, Germany.

56

